UNITED STATES OF AMERICA
CONSUMER PRODUCT SAFETY COMMISSION

IN RE: THYSSENKRUPP ACCESS CORP.

Respondent.

CPSC DOCKET NO.: 21-1

DECLARATION OF MAURO CARNEIRO

I, Mauro Carneiro, declare as follows:

1. I am currently the President of TK Access Solutions Corp., formerly known as thyssenkrupp Access Corp. ("the Company"), and I have served in that role since May of 2020.

2. I was employed by Access Industries Inc., a predecessor of the Company, as International Sales Coordinator from August of 1992 until the end of 1993. I then held various positions in unrelated businesses focused on manufacturing and distributing equipment for mobility-impaired individuals.

3. Until 2012, the Company, through several brands, manufactured residential elevator components for distribution to dealers.

4. In 2012, the Company exited the U.S. residential elevator market. The Company ceased manufacture and distribution of Components under all its brands.

5. Because the Company ceased manufacture and distribution of Components, none of the materials furnished to installers has changed since prior to 2012.

6. Because the Company ceased manufacture and distribution of Components in 2012, the number of distributed Components cannot have increased since that time and has likely decreased through use or obsolescence for the intended purpose.
7. To my information and belief, these dealers made site-specific selections of these components, often at the direction or with the participation of the learned-intermediary, non-consumer third parties, including, but not limited to, architects, builders, remodelers, and other contractors, based on the needs and situation of each particular installation location.

8. To my information and belief, the components were installed on-site by trained, professional, non-consumer installers, often third parties, as improvements to realty.

9. To my information and belief, the Company provided engineering drawings, planning guides, and Component specifications that directed installers to adhere to all applicable state and local building codes and mandatory and voluntary standards, including the then-current version of ASME A17.1 as adopted by the relevant authority having jurisdiction over the installation site.

10. Residential elevators are installed in a shaft or hoistway. This hoistway is set off from the rest of the residence by a “hoistway door.”

11. To my information and belief, the hoistway door installed at each landing was not manufactured or supplied by the Company.

12. To my information and belief, the construction of the hoistway and the selection and installation of the hoistway door at each landing were exclusively within the control of the third-party architects, builders, remodelers, and other contractors.

13. The space between hoistway door and the sill, and the hoistway door and the interior car door or gate, is known as the “Gap Space.”

14. Where this Gap Space is sufficiently large, a child may be able to open the hoistway door (if it is unlocked), enter the Gap Space, and close the hoistway door.
15. If the elevator is then called to another floor before the child re-opens the hoistway door, the magnetic lock will engage, and the child will be unable to open the hoistway door to exit the Gap Space, and may suffer serious, potentially fatal injuries.

16. Residential elevator installations are governed by state and local building, fire and electrical codes.

17. These codes generally draw upon the relevant voluntary standard, the American Society of Mechanical Engineers' ("ASME") A17.1, *Safety Code for Elevators and Escalators*, but jurisdictions may adopt different versions or portions at different times.

18. A17.1 contains a provision instructing installers as to the appropriate limit for the Gap Space.

19. To my information and belief, the Company advised installers to adhere to applicable building and other applicable mandatory and voluntary standards when installing elevators in a home.

20. Until after the Company ceased manufacturing and distributing elevator components, this provision limited the space between the hoistway door and the edge of the elevator sill or landing to three inches and the space between the hoistway door and the interior car gate to not more than five inches, and in 2016 ASME A17.1 was formally updated to reduce the recommended space between the sill or landing from three inches to ¾ inches, and the recommended space between the hoistway door to the interior car gate from five inches to four inches.

21. Where excessive Gap Spaces exist, they may be reduced by the installation of a "space guard," a rigid attachment that is installed on the elevator-facing side of the aftermarket
hoistway or hallway door and that prevents the door from being shut if the Gap Space is occupied.

22. Space Guards can reduce the Gap Space by up to 4 ½ inches but cannot be installed if the installation strictly met the then-in-force three-inch limit on the distance between the hoistway door and sill.

23. In or about 2013-2014, the Company advised CPSC staff that the Company would launch a campaign, called “homeSAFE,” to raise awareness of the hazards associated with improper elevator installations that created excessive Gap Space between the hoistway door and sill and hoistway door and interior car gate and to assist homeowners in installing space guards on hoistway doors to reduce the Gap Space.

24. The homeSAFE campaign launched on or about June 25, 2014, via a press release.

25. The homeSAFE campaign included direct notice to dealers and other elevator-industry professionals and public notice, including a website detailing the potential hazards associated with improper third-party installations of elevator hoistway doors and the availability of space guards to reduce excessive Gap Spaces.

26. The homeSAFE campaign included subsidies for the purchase of space guards.

27. The Company funded the homeSAFE campaign, which was joined in by the National Association of Elevator Contractors (“NAEC”), the Accessibility Equipment Manufacturer’s Association (AEMA), and the National Association of Elevator Safety Authorities (“NAESA”).

28. The Company requested CPSC’s public support for or reference to the homeSAFE campaign.
29. CPSC did not publicly support the homeSAFE campaign by joining the Company or others in promoting the campaign, but CPSC staff referenced the campaign in a staff Briefing Package recommending denial of a petition to establish a mandatory residential elevator standard.

30. In or about 2020-2021, the Company advised CPSC staff that it would launch a renewed Home Elevator Safety Campaign to further raise awareness of the hazards associated with improper elevator hoistway door installations that created excessive Gap Space and to provide homeowners whose elevators were manufactured by the Company with free inspections and, as needed, free installation of free Space Guards to reduce any excessive Gap Spaces.

31. The Company’s Home Elevator Safety Program (the “Program”) was launched on or about February 16, 2021, via a press release that identified a public website, http://www.homelevator-safety.com, and a toll-free number.

32. The Company has publicly committed to maintain the Program for approximately five years from launch, or through December 31, 2025.

33. The Company has requested that CPSC publicly promote or refer to the Program and make known to the public that homeowners may call or register at the Program website for a free measurement visit, and if needed, free installation of free space guards.

34. CPSC has refused to publicly support or refer to the Program.

35. Since the Company informed CPSC staff about the Program, CPSC has, before and since filing this Complaint, issued multiple public communications about elevator safety without notifying homeowners of the availability of the Program or the free inspections and, as needed, free space guards that it offers.
I declare under penalty of perjury that the foregoing is true and correct.

[Signature]

Mauro Carneiro
June 19, 2014

Certified Mail/Email: james.doyle@lewisbrisbois.com

Mr. Jay Doyle
Lewis Brisbois Bisgaard & Smith LLP
1180 Peachtree Street NE, Suite 2900
Atlanta, GA 30309

Re: CPSC File No. CA140069
ThyssenKrupp Access Corp.
Destiny & Independence Residential Elevators

Dear Mr. Doyle:

The staff of the Office of Compliance and Field Operations of the U.S. Consumer Product Safety Commission ("Commission") has completed its review of the information you provided under section 15(b) of the Consumer Product Safety Act ("CPSA"), 15 U.S.C. § 2064(b) on behalf of ThyssenKrupp Access Corp. ("Firm") concerning residential elevators ("Subject Products"). The staff has elected to close this investigation at this time.

Should the Firm receive any information that indicates that the risk of injury or hazard presented by the Subject Products is greater than or different from that indicated by the information it has already supplied to the Commission, it must immediately report that information to the Office of Compliance and Field Operations pursuant to section 15(b) of the CPSA.

The Firm has previously indicated that it voluntarily implemented a corrective action plan to address the reported problem. The staff acknowledges the corrective action measures the Firm has undertaken. These actions include establishing two (2) websites to educate consumers about the hazard and partially subsidizing the cost of space guards for consumers whose elevators were installed out of specification.
Section 6(b)(1) of the CPSA, 15 U.S.C. § 2055(b)(1), requires the Commission to give fifteen days advance notice of the intended disclosure of information that identifies the manufacturer or private labeler of a product, unless the Commission publishes a finding that the public health and safety require less notice. The staff is enclosing a summary of the Firm’s corrective action plan, which may be made public by the Commission. Because the corrective action is being taken voluntarily and in the absence of a preliminary staff determination that this product presents a substantial product hazard, the Firm’s agreement to include its corrective action plan in Commission publications is purely voluntary on the Firm’s part. Unless the Firm notifies the staff in writing within fifteen (15) days of the date of this letter, the staff will assume the information in the enclosed summary is accurate and that the Firm does not object to its publication. **Please reference the file number stated above in your response.**

If you have any questions concerning this letter, you may contact me at (301) 504-7514 or JThron@cpsc.gov.

Sincerely,

Jonathan Thron
Compliance Officer
Defect Investigations Division

Enclosure:
- Corrective Action Plan Summary

cc: Judy Smith
Voluntary Corrective Action Plans Under Section 15 of the Consumer Product Safety Act and Section 15 of the Federal Hazardous Substances Act

The following is a list of voluntary corrective action plans recently accepted by the Commission (or the staff acting under authority delegated by the Commission). A firm’s taking corrective action does not constitute an admission by the firm that a substantial product hazard exists.

Space does not permit the staff to give a complete list of the specific model numbers of the products involved in each of these corrective actions. Consumers who believe that they have a product affected by one of these actions should follow the instructions given in this list or contact either the manufacturer or the Commission to determine if their product is one of those affected.

<table>
<thead>
<tr>
<th>DATE</th>
<th>FIRM AND PRODUCT</th>
<th>ALLEGED HAZARD</th>
<th>CORRECTIVE NARRATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/13/2014</td>
<td>ThyssenKrupp Access Corp. 4001 E 138 St. Grandview, MO 64030 Residential elevators</td>
<td>Children can become entrapped between the hoistway door and the elevator car door and sustain serious or fatal injuries.</td>
<td>Firm has established two (2) websites to educate consumers about the hazard and will partially subsidize the cost of space guards for consumers whose elevators were installed out of specification.</td>
</tr>
</tbody>
</table>
Petitioners:
The Safety Institute
Carol Pollack-Nelson, Ph.D., Independent Safety Consulting
Cash, Krugler & Fredericks, LLC

PETITION FOR RECALL TO REPAIR/RETROFIT AND RULEMAKING

Petitioners, The Safety Institute, Carol Pollack-Nelson, and Cash, Krugler & Fredericks, LLC (hereinafter "Petitioners"), pursuant to 16 C.F.R. § 1051 Procedure for Petitioning for Rulemaking, request that the U.S. Consumer Product Safety Commission initiate mandatory rulemaking to set safety standards for the design and installation of residential elevators to eliminate excessive space between the elevator car door/gate (interior door) and hoistway or swing door (exterior door).

In many home elevators, and similar versions found in older apartment and commercial buildings, the clearance between the two doors is large enough to allow children as old as 12 years to fit between them. When the elevator is called to another floor, the hoistway door automatically locks, and the child’s body is carried along with the elevator car until it meets the obstruction of the sill, where the child’s body – usually the head – is crushed. Industry has been aware of these dangers for more than 80 years, but has failed to adopt an appropriate, safe voluntary standard to address this design flaw. At least 55 child deaths have occurred since 1967; the most recent known death occurred in 2009. Since 2010, there have been three serious permanent debilitating injuries resulting from child entrapment.

A mandatory standard is required because the gap between the doors that is permitted by the voluntary standard has caused deaths and serious injuries. Efforts to work through the voluntary standards process, as described in this petition, have not adequately addressed the defect and therefore, have not reduced the risk of harm. In fact, 35 years ago, the voluntary standards committee actually changed the dimensions for residential elevators from a maximum gap of 4 inches between the two doors, to the less-safe 5-inch gap.

The petitioners also request that the U.S. Consumer Product Safety Commission order a recall (to repair) of all residential elevators that allow a gap between the hoistway and swing doors of more than 4 inches. Recalled defective doors should be retrofitted with a device that would either detect the presence of a child or small adult in the door path and prevent the elevator from operating or physically fill the gap to prevent children and small adults from becoming entrapped.

Industry Knowledge of Design Defect

The elevator industry has known about the entrapment hazard in swing door elevators for
at least eight decades. In 1931, Otis Elevator Company obtained a patent for an
inexpensive 6-inch space guard to prevent child entrapment. In 1932, Otis sent a letter to
its customers warning them about this hazard.¹ In 1943, the company followed up; an
Otis General Service Manager sent an inter-office memo reiterating the dangers of
excessive space between the hoistway doors and the threshold. The elevator company
was concerned that buildings may have changed hands since the original alert went out,
leaving the current owners unaware of the threat, or that the original owner ignored the
warning or installed a space shield, which fills the gap and makes it impossible for a child
to fit in the space, but failed to remove projecting hardware.²

In 1955, the first Residence Elevator Code addressed the entrapment issue. ASME
Elevator Safety Code limited distance between the doors to a maximum of 4 inches. (At
the time, there were no accordion doors on elevators – this was a flat-to-flat
measurement.)³ But, in 1981, for unknown reasons, the ASME changed the rule to widen
the gap, allowing a maximum of 5 inches between the doors.

ASME standard A 17.1, Sec. 5.3.1.7.2 states:

Clearance Between Hoistway Doors or Gates and Landing Sills and Car
Doors or Gates. The clearance between the hoistway doors or gates and
the hoistway edge of the landing sill shall not exceed 75 mm (3 in). The
distance between the hoistway face of the landing door or gate and the car
doors or gate shall not exceed 125 mm (5 in). ⁴

In 1950, Otis General Service Manager again noted “recent occurrence of accidents”
caused by excessive space between the hoistway and elevator car doors, suggesting that
many elevators remained unremedied.⁵ A 1963 memo noted the rise in liability claims
against the company and suggested a survey of all Otis elevators under a service contract
with sub-standard safety conditions – including the condition of too much space between
the hoistway and elevator doors.⁶

In the early 1990s, the residential elevator industry introduced accordion doors for home
elevators; this only increased the entrapment hazard. The accordion door’s flexibility and
its peaks and valleys create excess space, above and beyond the 5-inch gap permitted by

¹ Subject: Automatic Elevator Space conditions Between the Hoistway Doors and the Threshold; H.R.
Otto; Otis Elevator Company; September 30, 1943.
² Subject: Automatic Elevator Space conditions Between the Hoistway Doors and the Threshold; H.R.
Otto; Otis Elevator Company; September 30, 1943
³ American Standard Safety Code for Elevators; Private Resident Elevators and Inclined Lifts; American
Society of Mechanical Engineers; June 15, 1955
⁴ Standard A 17.1, Sec. 5.3.1.7.2; ASME
⁵ Terry Garmey Speaks About Tucker Smith and the Campaign to Repair 4,000 Guards on OTIS Elevators;
⁶ Terry Garmey Speaks About Tucker Smith and the Campaign to Repair 4,000 Guards on OTIS Elevators;
the ASME Standard. A child or small adult can fit into those valleys, and when the hoistway (exterior) door is closed and the elevator moves, they can be seriously injured or killed. Some elevator designers, installers and others purportedly following the ASME A 17.1 5-inch rule do not take into account the extra space created by the valleys, which, in effect, can increase the gap by an additional three inches or more.

In 2003, the Otis Elevator Company, as part of a settlement with the family of an eight-year-old boy who died after becoming entrapped between elevator doors, launched a national safety campaign, equipping 4,000 elevators with space guards. Otis also sent letters to other manufacturers urging them to check the size of the gap between elevator doors and offered free space guards for Otis-manufactured elevators:

Over the years, a number of tragic accidents have occurred on elevators with swing-type hoistway doors, including the deaths of numerous children. These accidents have demonstrated the safety risk posed by elevators with swing doors. If the hoistway door and car gate are both closed, the space between them would be wide enough to fit a child or small adult. Should the elevator be called up while the person is in that space, serious injury or death is likely to result. These tragedies can be avoided.

In addition, Otis’ Director of Worldwide Standards, Lou Bialy, highlighted the danger posed by this defect in a trade publication, Elevator World, entitled *Space Between Swing Doors Collapsible Gates Still A Hazard*. As recently as March 2014, elevator experts James Filippone and John Koshak reiterated the dangers of child entrapment in another Elevator World article entitled *Solutions Needed to Ensure Children’s Safety*.

Safer and Feasible Alternative Designs

Safer design options reduce the gap between the hoistway and car doors. Such designs recognize the ergonomic factors that contribute to the hazard. For example, as the CPSC’s own anthropometry data show, children’s heads are larger than their bodies, and the most vulnerable children, ages 2-3.5 years, have head breadths of less than five inches.

The CPSC and others have identified 4 inches as a key element of safe design in other contexts, such as the allowable space between staircase spindles, specifically to prevent head entrapment. The CPSC’s Public Playground Safety Handbook recommends a more conservative maximum allowable gap of 3.5 inches, specifically to prevent a child’s

7 Letter to National Wheelovator; Raymond Moncini; Otis Elevator Company; December 8, 2003
8 Letter to National Wheelovator; Raymond Moncini; Otis Elevator Company; December 8, 2003
9 Space Between Swing Doors Collapsible Gates Still A Hazard; Lou Bialy; Elevator World; May 2003
10 Change in the Physical Dimensions of Children in the United States; U.S. Consumer Product Safety Commission; April 27, 1998
11 Ergonomics and Design Review; Rani Leuder; *Helvey v. ThyssenKrupp Access Corporation*; October 22, 2012
head from entering the space and becoming entrapped.12

In addition, history shows that the design alternatives are feasible. From 1955, when ASME’s first residential elevator code was published, until 1980, when the dimension was changed, the voluntary industry standard called for a maximum gap of 4 inches between the two doors.

Individual states have more stringent standards than those set by ASME. Massachusetts’ elevator code, for example, restricts any gap between the hoistway doors and the car doors or gates to 3 inches.13 In the state of Georgia, an effort to follow suit is underway. The amendment to the International Residential Code proposed by the State Fire Marshal’s office, which oversees elevator codes, reads:

\begin{quote}
Passenger elevators, limited-use/limited-application elevators or private residence elevators shall have hoistway landing openings that meet the Georgia amended requirements of ASME A17.1 Sections 5.3.1.1 and 5.3.1.7.2. The clearance between the hoistway doors or gates and the hoistway edge of the landing sill shall not exceed 3/4 inch (19 mm). The distance between the hoistway face of the landing door or gate and the car door or gate shall not exceed 3 inches (75 mm).14
\end{quote}

This change is scheduled to be finalized by the Georgia Department of Public Affairs in November and go into effect in January 2015.

A reduction of the clearance is feasible because it does not change the manufacture of the elevator itself; rather it guides the installation of the hoistway door. Currently, in residential settings, the exterior door is typically set flush to the wall, like any other door in a home. This setting typically creates the excessive gap. Installers can exacerbate the gap by misinterpreting the 5” Rule in the voluntary standard as measuring the distance between the closest points between the doors, rather than the furthest point. In fact, manufacturers’ designs often instruct installers to measure between the hoistway door and the peak of an accordion car door, rather than to the valley. Those who do not take into account the extra space beyond the peak of the accordion door can create up to 8 inches of refuge space, which permits entry by a child.

\textbf{Voluntary Standards Have Not Prevented Risk of Harm}

In 83 years, the industry not only has failed to address the entrapment hazard, it actually increased the potential for injury and death by re-writing the voluntary standard to allow a wider gap between the hoistway and exterior door.

12 Public Playground Safety Handbook; U.S. Consumer Product Safety Commission; undated
135.3.1.7.2 Clearance Between Hoistway Doors or Gates and Landing Sills and Car ‘Doors or, Gates; 5.3.1.7 Protection of Hoistway Openings.; 524 CMR Board of Elevator Regulations; PDF Pg. 214; September 28, 2012
14 Georgia State Amendments to the Residential Elevator Codes for One and Two-Family Dwellings; August 13, 2014
The voluntary ASME standard has failed to safeguard children from injuries and deaths. According to CPSC’s own figures, there were an estimated 1600 injuries associated with residential elevators in just a two-year period.

The most recent figures from CPSC’s NEISS system show that an estimated 1,600 injuries associated with residential elevators and lifts were seen in emergency departments from 2011 through 2012. CPSC only has jurisdiction over elevators customarily used by consumers in a residential setting. Some of those injuries included children becoming entrapped in the gap of residential elevators, tragically leading to fatalities and serious injuries. The agency has an active and ongoing compliance investigation regarding the safety of residential elevators and the entrapment hazard they can present. While CPSC investigates the role and responsibilities of manufacturers and installers when it comes to the safety of residential elevators, owners of residential elevators should take steps to ensure children do not have unsupervised access to in-home elevators.15

In addition, the entrapment hazard has led to a number of child deaths. In the early1990s, the Otis Elevator company revealed to the plaintiffs in a New Jersey case the deaths or severe injuries to 34 children from 1983-1993 in the southern New York and New Jersey area alone16 and an additional 16 deaths from 1947 to 1963.17 More recently, the petitioners are aware of five more deaths and two catastrophic injuries in which children were entrapped and crushed in residential elevators.18

The ASME Voluntary Standards Process Has Been a Failure

The ASME standards-setting process has not produced a substantive change to the voluntary residential elevator standard in nine years of committee meetings, despite members repeatedly bringing up the excessive gap issue.

In 2005, the A-17 committee began discussing revisions to the “Clearance” section of the standard. Several members of the A-17 Committee lobbied to change the Clearance dimensions of the standard back to the original dimensions. Minutes of the committee meetings between September 2006 and June 2007 show that some committee members expressed concern about the hazardous gap permitted by the standard. However, the group rejected any proposals for revising the standard to require tighter clearances and more precisely described measuring points to ensure that home elevators would comply.19

15 Email to The Safety Record Blog; Scott Wolfson; US Consumer Product Safety Commission ; August 27, 2013
16 The Elevator Design Hazard That’s Been Killing Children for Decades; The Safety Record Blog; July 11, 2013
17 Elevator Safety Flaws Persist, Despite History of Tragic Accidents; Shawn Hubler; Fair Warning; December 8, 2013
18 Appendix A; Elevator Entrapment Deaths and Injuries
19 A17 Residence Elevator Committee; Minutes; September 19, 2006- June 18, 2007
For example, Calvin Rogler, chief of the state of Michigan’s Elevator Safety Division, suggested that the language be modified to only allow for a 4-inch clearance, because when accordion doors are used, the clearance from the face of the hoistway door to the furthest part of the accordion door resulted in a clearance of 5.5-inches. At one such meeting, he said “The clearances between the car and the hoistway door must be reduced to provide an acceptable level of safety for the families using this device. Accidents dealing with this area have been deadly.”

Another committee member, Richard Gregory, an elevator consultant, described an incident that occurred in Michigan in which a 10-year-old boy who had slipped between the hoistway door and the accordion door was fatally crushed when the lift was called to a floor below. It would be easy to reduce clearances in elevators with wide gaps with products readily available on the market, he said in an email to the committee chairman.

“It’s easy, it saves lives. So it should be done,” Gregory wrote.

Despite repeated attempts to persuade the majority of members that the excessive gap was a serious safety problem that resulted in a child’s death, the committee decided that the status quo should remain: “The committee feels assured that the measurement criteria presented will provide for adequate safety. In addition, the 5-inch dimension has been in the standard for many years.”

Not only has the subcommittee failed to revise the standard in order to adequately address this hazard, they recently considered making the Clearances section of the standard even more lenient. At the first quarterly meeting of 2013, the committee was poised to codify the latest revisions, which included measuring instructions that would have allowed designers to consider the shortest point when measuring the clearance, instead of the farthest point. Fortunately, a member of the larger standards committee made an impassioned and successful plea to reject the change.

More recently, the committee shelved a proposal to reduce the gap between the doors on existing elevators to a 4-inch maximum, while it awaits the results of an internal hazard analysis. Although the A17 committee had been looking at this issue since 2005, they just voted to perform a hazard analysis last year. The committee also weighed a proposal to clarify the rule and make explicit that the 5-inch maximum dimension/constraint must be measured between the farthest points between the doors – not the closest. Even if the Committee immediately approved both, any rule change is effectively delayed for another three years, when the next edition of the Elevator Safety Code is published.

20 A17 Residence Elevator Committee; Minutes; September 19, 2006- June 18, 2007; Carl Rogler; PDF Pg. 10; Responses to Letter Ballott #05-1123 Comments; November 28, 2005
21 Accordion Door Accident; email; Richard Gregory to Al Vershell; June 27, 2006
22 Accordion Door Accident; email; Richard Gregory to Al Vershell; June 27, 2006
23 A17 Residence Elevator Committee; Minutes; September 19, 2006- June 18, 2007; Carl Rogler; PDF Pg. 10; Responses to Letter Ballott #05-1123 Comments; November 28, 2005
We have no reason to believe that will happen. Nine years have elapsed since the ASME committee first considered modifying requirements for clearances. To date, the standard still has not been revised to effectively address the hazard. Clearly, industry has demonstrated its unwillingness to correct the problem on its own and there is insufficient industry buy-in supporting the change. For example, when one member suggested amending the rule to reflect that the measurements should be taken from the farthest points, it was rejected: “The Committee feels assured that the measurement criteria presented will provide for adequate safety.” 24 In another instance, a small group within the committee voted against the proposed rule, with one member arguing: “Those clearances between the car and hoistway doors must be reduced to provide an acceptable level of safety for the families using this device. Accidents dealing with this area have been deadly for those involved.” 25 Even when confronted with the history of child deaths, the response was: “The committee feels assured that the measurement criteria presented will provide for adequate safety. In addition, the 5” inch dimension has been in the standard for many years.”26

More importantly, even if ASME A17 amends the rule, its adoption is not automatic. Any jurisdiction (whether city, county or state) may adopt any version of the A17 Elevator Safety Code. Many jurisdictions are decades behind. For example, some states today use the 2004 or older versions, even though there have been many subsequent versions. Other jurisdictions, such as South Carolina, do not have any code for residential elevators and do not require permitting or inspections for single family residential elevators. Children represent a vulnerable population who need the protection of a strong mandatory standard when the voluntary standards process has repeatedly failed to offer reasonable and feasible protections against potentially grievous injury.

The ASME’s standard-setting process, unfathomable delays and rationale for rejecting proposed changes is at odds with the purpose of developing a safety standard. Industry’s inaction is even more egregious given that methods for addressing the hazard are technologically and economically feasible and have been for many years. Further, to conclude that a standard should not be changed simply because it has existed for many years is not the result of a credible standards-writing process.

Ironically, the elevator industry has launched the homeSAFE (Safety Awareness for Elevators) Campaign, to increase home elevator safety awareness. The campaign is sponsored by Association of Members of the Accessibility Equipment Industry (AEMA), National Association of Elevator Contractors (NAEC), National Association of Elevator Safety Authorities International (NAESA) and ThyssenKrupp Access. The HomeSAFE Campaign recommends that homeowners make sure the gap between the accordion and swing doors be no more than 4 inches, even as the ASME committee refused to codify this advice into its own standards:

24 TN05-803 Residence Elevator Committee; Attachment 8C; Pg. 5
25 TN05-803 Residence Elevator Committee; Attachment 8C; Pg. 6
26 TN05-803 Residence Elevator Committee; Attachment 8C; Pg. 6
Measure the gap between the elevator door and the hoistway door to verify it is not wide enough for a child to become entrapped. ASME Codes require the space be no more than 5 inches; but for additional safety precautions, homeSAFE recommends the space between the hoistway door and cab gate is no more than 4 inches. Features such as space guards or special hoistway doors can help reduce the space between the elevator door and the hoistway door. Other safety devices such as light curtains also may help detect someone in the space between doors.27

Petition Request

The Petitioners hereby formally submit this Petition for Rulemaking under the authority and process set forth in 16 CFR § 1051 Procedure for Petitioning for Rulemaking and request the Commission to promulgate a mandatory standard that constrains the space between residential elevator hoistway doors and car doors/gates to 4 inches when measured from the inside of the hoistway door to the farthest point on the car door/gate (i.e., the valley for an accordion door).

Under Sec. 9 [15 U.S.C. § 2058] Procedure for Consumer Product Safety Rules, the Commission must meet certain criteria to commence a rulemaking: identify the product and the risk of injury associated with that product, ensure a rule is in the public interest, and consider the adequacy of any already existing voluntary standard in eliminating or adequately reducing an unreasonable risk.

The petitioners believe that the record clearly establishes the hazard – the entrapment risk posed by excessive space between the inner and outer elevator doors; the significant risk of injury and fatality; and the failure of the voluntary standard to mitigate or eliminate the hazard despite the feasibility of a technical fix.

To ensure the safety of existing elevators, the Petitioners also request that the Commission commence a recall to repair, requiring all manufacturers to retrofit existing elevators to prevent children and small adults from becoming entrapped. Several technologies exist to eliminate this hazard. For example, light curtains use light beams and sensors to detect a presence between the doors and interrupt the operation of the elevator if something or someone is in this space. This would prevent the scenario of the elevator car being called to another floor while a child is entrapped between the car door/gate and the hoistway door. Door baffles (or space guards) are another potential solution. These after-market space blockers fill the excess clearance space, removing the opportunity for children or small adults to fit themselves in the space between the car and hoistway doors.

The Petitioners appreciate the Commission's consideration of this request. We are available to discuss this petition at your convenience.

Respectfully submitted,

The Safety Institute
By: Jamie Schaefer-Wilson
Executive Director
340 Anawan Street
Rehoboth, MA 02769
646-644-6320
Jamie@thesafetyinstitute.org

Independent Safety Consulting
By: Carol Pollack-Nelson, Ph.D.
13713 Valley Drive
Rockville, MD 20850
301-340-2912
pollacknel@comcast.net

Cash Krugler & Fredericks, LLC
By: Andrew Cash, David Krugler
5447 Roswell Rd, Atlanta, GA 30342
404-659-1710
dkrugler@ckandf.com
acash@ckandf.com

Interest of Petitioners
This petition is brought by three organizations on behalf of all children and their families affected by residential elevators:

The Safety Institute is a 501 (c) 3 non-profit organization whose focus is on injury prevention and product safety. The Safety Institute examines areas of injury prevention and product safety across a broad spectrum. The Institute bases its plans and priorities on issues that require greater study and emphasis, as well as those which may be underserved by other organizations and advocates. The Institute gives special attention to those areas of emerging importance to injury and product safety, including the effects of new and changing technologies.

Cash, Krugler & Fredericks, LLC is a law firm representing victims and their families in cases involving catastrophic injury and death. The firm pursues this petition on behalf of the families with whom they have worked whose children have suffered brain injuries, paralysis and other disabilities due to residential elevator hazards.
Appendix A

Elevator Entrapment Deaths and Injuries

According to CPSC statistics, there were an estimated 1,600 injuries associated with residential elevators in a two-year period. The following incidents are a small sample of the injuries and deaths:

1958: Three-year-old girl died, caught between the inner grill and outer door
San Francisco, California

- The three-year-old girl ran ahead to press the button for the automatic elevator as her babysitter prepared to leave;
- The elevator arrived at the fourth-floor and the outside door opened. The girl was caught between the inner grill and outer door, which closed behind her;
- Somebody pressed the button on another floor and the young girl was crushed to death.¹

1961: Seven-year-old boy died, crushed when he became wedged between the elevator door and the gate
Red Bank, New Jersey

- The seven-year-old boy who may have been playing or hiding from a playmate when the incident occurred, became wedged between the elevator door and the gate;
- The boy’s body was found wedged in the space between the door and the gate of the elevator, which was stuck between the third and fourth floors of the apartment building.²

1962: Three-year-old girl died, caught between the wall and the moving elevator
Brooklyn, New York

- Three-year-old girl was crushed to death between the wall and the moving elevator;
- Police said the victim somehow managed to get the inner door open and took hold the fourth-floor outer door as the self-service elevator descended in a Brooklyn apartment.³⁴

¹ Charleston Daily Mail, Thursday, May 8, 1958, Page 1; http://newspaperarchive.com/us/west-virginia/charleston/charleston-daily-mail/1958/05-08/
⁴ Toledo Blade, May 23, 1962; http://news.google.com/newspapers?nid=1350&dat=19620523&id=RbxOAAAAIBAJ&sjid=MgEEAAAAIBAJ&pg=6627,511812
1976: Seven-year-old boy died, trapped between the outer door and the wall of the elevator shaft
Newark, New Jersey

- The seven-year-old boy became trapped in the building’s elevator between its outer door and the wall of the elevator shaft;
- The elevator was activated and the boy was dragged up to the third floor;
- Another child who was racing up a nearby stairway to beat the elevator opened it, saw the victim wedged within it, and ran to seek help;
- Rescue workers worked for four and one-half hours to free the child; he died while still trapped.5

1977: Ten-year-old girl; crushed in an elevator between the hoist way door and the gate
Yonkers, New York

- Ten-year-old girl was crushed in an elevator between the hoistway door and the gate.6

1980: Seven-year-old boy sustained broken leg, bruising and scarring
Newark, New Jersey

- The seven-year-old boy was getting out of the elevator at a basement landing when he found himself trapped as the car gate closed behind him and the hoistway door was not open;
- Someone else called the car, and it ascended with the young boy stuck between the car gate and hoistway door.7

1986: 12-year old boy died, trapped between elevator door and swing gate
Newark, New Jersey

- The 12-year-old boy became wedged between the swing hatch door and the elevator car gate;
- The elevator received an up call and traveled away from the basement landing, crushing the child between the wall immediately above the basement door header and the 2nd landing sill and leading edge of platform with toe guard.8

5 Portee v. Jaffee | Leagle.com;
http://leagle.com/decision/198017284NJ88_1169.xml/PORTEE%20v.%20JAFFEE
6 The Herald Statesman, August 20, 1978;
7 Liberty Mutual, accident report, December 9, 1980
8 Otis Elevator company, accident report, April 14, 1987
1997: Four-year old girl died, caught between floors in a residential elevator
Chicago, Illinois

- Four-year-old girl was caught between the floors of an elevator in a residential building;
- Her mother had gotten off before her and the other children pressed the call button.9

2001: Eight year-old boy died, entrapped between swing door of residential elevator
Bethel, Maine

- The 8-year-old boy pushed the call button and opened the swinging door; the door closed behind the boy; before he could open the collapsible gate a maid on the second floor pushed the call button, interlocking the outer door and trapping the child in the gap between the outer swing door and collapsible gate;
- The young boy was nearly decapitated and died in front of his family;
- The distance between the outer swing door and collapsible gate was seven inches.
- Otis settled and sent notices to the elevator industry about the hazard.10,11

2002: Two sisters, ages six and seven died, heads crushed in residential elevator
Monmouth County, New Jersey

- Two girls were lying down in the elevator with their heads partly across the threshold as the car rose;
- The safety feature was disabled allowing it to descend while the girls’ heads stuck out past the gate;
- They died when their heads were wedged against part of the shaft.12

10 Space Between Swing Doors Collapsible Gates Still A Hazard; Lou Bialy; Elevator World; May 2003
11 Terry Garmey Speaks About Tucker Smith and the Campaign to Repair 4,000 Guards on OTIS Elevators; Smith Elliott Smith & Garmey; http://www.fairwarning.org/wp-content/uploads/2013/12/TuckerSmithArticle.pdf
2003: Ten-year-old boy died, entrapped and crushed in swing door of residential elevator equipped with an accordion door
Mass City, Michigan

- The ten-year-old boy got caught between the hoistway door and the accordion door;
- The elevator started going down crushing the boy who then suffocated;
- The distance to the peak of the accordion door was approximately 5”, but valleys were much deeper;
- The family’s expert notified ASME A17 Residence Elevator Committee of this incident in 2006. 13

2004: Five-year-old boy died, crushed between elevator door and hoistway door
Dallas, Texas

- The five-year-old boy entered the elevator with his two-year-old brother in their family’s multistory condominium;
- The accordion-style gate was not closed, allowing the boy’s body to be extended outside the door as the elevator started moving up;
- As the elevator ascended, his head was crushed by the second floor landing. 14, 15

2006: Eleven-year-old girl died, entrapped between the elevator and shaft walls
Carolina Beach, North Carolina

- The 11-year-old girl was thought to have entered and exited the elevator with another child;
- The owner of the residence went to use the elevator and was unable to open the door;
- The fire department was notified and upon responding and opening the downstairs elevator found the girl pinned in the elevator shaft between the elevator and shaft walls. 16

13 ASME A17 Residence elevator committee 2006 meeting minutes
16 Caroline Beach Police Department, North Carolina, Incident/Investigation report July 23, 2006
2009: Nine-year-old boy died, pinned in an elevator shaft between the wall and the door
Sturgis, Kentucky

- A nine-year-old boy attending his grandmother's wedding ceremony died when he became pinned in a church elevator shaft;
- He wandered off by himself and was riding the elevator in the church sanctuary between the first and second floors;
- He became pinned between the elevator and the wall; there were no witnesses.\(^\text{17}\)

2010: Three-year-old boy suffered catastrophic brain injury, entrapped between hoistway door and accordion door
Cummings, Georgia

- The three-year-old boy was entrapped between the hoistway (exterior) door and elevator accordion door;
- After child closed the hoistway door, the door automatically locked by way of an interlock;
- When mother hit the call button from the 3\(^{rd}\) floor, the child was trapped in this space; the elevator rose toward the third floor and then stopped and re-leveled;
- The child was crushed by the elevator when it re-leveled down to the second floor;
- The distance between the hoistway door to accordion door varied by nearly 3”;
 - 4.875” to tip of the accordion door / 7.5” to valley of the accordion door;
- Injuries are catastrophic and permanent. Child diagnosed with an anoxic brain injury due to deprivation of oxygen for an extended period of time; he cannot communicate with the outside world or move in any meaningful way;
- This incident was reported to the CPSC on December 7, 2012.\(^\text{18}\)

\(^{18}\) Jacob Helvey, Elevator Incident report date, December 7, 2012; http://www.saferproducts.gov/ViewIncident/1289132
November 2013: Ten-year old boy suffered catastrophic brain injury and quadriplegia, entrapped and pinned under elevator car
Murrells Inlet, South Carolina

- Ten-year-old boy suffered a catastrophic brain injury when he became trapped in an Elmira residential elevator manufactured by Cambridge Elevating, Inc. out of Cambridge, Canada;
- As the elevator began to rise with the car gate open, the child peered over the edge of the car platform and down into the elevator shaft;
- As the car continued to rise, the child’s head came into contact with the doorframe, pinning his head under the elevator car;
- The car continued to rise up to the third floor, where the child was found laying face down on the floor of the elevator car with his head and neck trapped under the car platform;
- The jaws of life were eventually required to rescue the child from the elevator;
- In addition to multiple fractures, he suffered catastrophic brain injury.\(^{19}\)

\(^{19}\) Jordan Nelson Elevator Incident report date September 5, 2014; http://www.saferproducts.gov/ViewIncident/1427183
CONSUMER PRODUCT SAFETY COMMISSION
[Docket No. CPS–2015–0001]
Petition Requesting Rulemaking on Residential Elevators
AGENCY: Consumer Product Safety Commission.
ACTION: Notice.
SUMMARY: The Consumer Product Safety Commission (CPSC) has received a petition requesting a safety standard for residential elevators to address an entrapment hazard between the elevator interior and exterior doors. The Commission invites written comments concerning the petition.
DATES: The Office of the Secretary must receive comments on the petition by March 23, 2015.
ADDRESSES: You may submit comments, identified by Docket No. CPSC–2015–0001, by any of the following methods: Electronic Submissions: Submit electronic comments to the Federal eRulemaking Portal at: http://www.regulations.gov. Follow the instructions for submitting comments. The Commission does not accept comments submitted by electronic mail (email), except through www.regulations.gov. The Commission encourages you to submit electronic comments by using the Federal eRulemaking Portal, as described above.
Written Submissions: Submit written submissions in the following way: Mail/hand delivery/courier to: Office of the Secretary, Consumer Product Safety Commission, Room 820, 4330 East West Highway, Bethesda, MD 20814; telephone (301) 504–7923. Instructions: All submissions received must include the agency name and docket number for this notice. All comments received may be posted without change, including any personal identifiers, contact information, or other personal information provided to: http://www.regulations.gov. Do not submit confidential business information, trade secret information, or other sensitive or protected information that you do not want to be available to the public. If furnished at all, such information should be submitted in writing.
Docket: For access to the docket to read background documents or comments received, go to: http://www.regulations.gov; and insert the docket number, CPSC–2015–0001, into the “Search” box, and follow the prompts.
FOR FURTHER INFORMATION CONTACT: Rocky Hammond, Office of the Secretary, Consumer Product Safety Commission, 4330 East West Highway, Bethesda, MD, 20814; telephone (301) 504–6833, email: rhammond@cpsc.gov.
SUPPLEMENTARY INFORMATION:
On November 1, 2013, The Safety Institute, Carol Pollack-Nelson, and Cash, Krugler & Fredericks, LLC (collectively referred to as petitioners), submitted a petition to the Commission to initiate rulemaking to mandate a safety standard for residential elevators to address an entrapment hazard caused by excess space between the elevator car door/gate (interior door) and hoistway or swing door (exterior door).
Petitioners assert that in many home elevators, and in similar versions found in older apartment and commercial buildings, the clearance between the interior door and exterior door is large enough to allow children as old as 12 years to fit between the doors. According to petitioners, a child can become entrapped in the door path when the elevator is called to another floor, and the hoistway door automatically locks. The child’s body is carried along with the elevator car until the hoistway door meets the obstruction of the sill, where the child’s body—usually the head—is crushed.
Petitioners request that the CPSC promulgate a mandatory standard that constrains the space between residential elevator hoistway doors and car doors/gates to 4 inches when measured from the inside of the hoistway door to the farthest point on the car door/gate. Petitioners contend that the CPSC’s figures show that there were an estimated 1,600 injuries associated with residential elevators and lifts from 2011 through 2012. According to the petitioners, some of those injuries, as well as several deaths, were due to children becoming entrapped in the gap between the residential elevators doors.
In addition, the petitioners state that the voluntary standard (ASME Elevator Safety Code) has failed to safeguard children from injuries and deaths from the entrapment hazard because that standard allows a wider gap between the doors for a maximum of 5 inches.
Interested parties may obtain a copy of the petition by writing or calling the Office of the Secretary, Consumer Product Safety Commission, 4330 East West Highway, Bethesda, MD, 20814; telephone (301) 504–6833. The petition is also available at http://www.regulations.gov under Docket No.

Barry S. Lineback,
Director, Business Operations.

[FR Doc. 2015–01011 Filed 1–21–15; 8:45 am]
BILLING CODE 6353–01–P

Alberta E. Mills,
Acting Secretary, Consumer Product Safety Commission.
[FR Doc. 2015–09907 Filed 1–21–15; 8:45 am]
BILLING CODE 6355–01–P

DEPARTMENT OF DEFENSE
Office of the Secretary
Termination of Missile Defense Advisory Committee
AGENCY: DoD.
ACTION: Notice to alter a System of Records.
SUMMARY: The Department of the Navy proposes to alter the system of records, N01754–4, entitled “Navy Family Accountability and Assessment System (NFNAS)” in its inventory of record systems subject to the Privacy Act of 1974, as amended.
This system is used to account for personnel (status and location(s)) following a natural/manmade disaster or when directed by the Secretary of Defense to assess the impact of the disaster on DoD affiliated personnel and their families, by conducting a needs assessment survey; to capture information required to support Navy and DoD affiliated personnel as they return to a stable state following a disaster; and to track Navy affiliated personnel and family members’ support requirements and command readiness efforts in areas such as Individual Augmentation Deployments, Exceptional Family Member Program, and mandated training.
DATES: Comments will be accepted on or before February 23, 2015. This proposed action will be effective the day following the end of the comment period unless comments are received which result in a contrary determination.
ADDRESSES: You may submit comments, identified by docket number and title, by any of the following methods:

Instructions: All submissions received must include the agency name and docket number for this Federal Register document. The general policy for comments and other submissions from members of the public is to make these submissions available for public viewing on the Internet at http://www.regulations.gov as they are received without change, including any personal identifiers or contact information.

SUPPLEMENTARY INFORMATION: The Department of the Navy’s notices for systems of records subject to the Privacy Act of 1974 (5 U.S.C. 552a), as amended, have been published in the Federal Register and are available from the address in FOR FURTHER INFORMATION CONTACT or from the Defense Privacy and Civil Liberties Office Web site at http://dpclfo.defense.gov/. The proposed system report, as required by 5 U.S.C. 552a(r) of the Privacy Act of 1974, as amended, was submitted on December 3, 2014, to the House Committee on Oversight and Government Reform, the Senate Committee on Governmental Affairs, and the Office of Management and Budget (OMB) pursuant to paragraph 4c of Appendix I to OMB Circular No. A–130, “Federal Agency Responsibilities for Maintaining Records About Individuals,” dated February 8, 1996 (February 20, 1996, 61 FR 6427).

Aaron Siegel,
Alternate OSD Federal Register Liaison Officer, Department of Defense.

N01754–4
SYSTEM NAME:
CHANGES:
* * * * *
CATEGORIES OF INDIVIDUALS COVERED BY THE SYSTEM:
Delete entry and replace with “DoD affiliated personnel that includes Military service members (active duty, Guard/Reserve and the Coast guard personnel when operating as a military service with the Navy), civilian employees, family members of the above and contractors working at DoD facilities.”

CATEGORIES OF RECORDS IN THE SYSTEM:
Delete entry and replace with “The military departments may request information to assess the needs of affiliated personnel using a needs assessment survey to help determine any specific emergent needs. Surveys are to include the date of assessment, the type of event and category classification, contacts with the military family, and a Federal Emergency Management Agency (FEMA) Number (if issued).
Individual augmentation deployment records include post deployment health assessments (PDHA) dates, dates of deployment, and contacts with the service member or contractor and family. Exceptional Family Members Program information that include dependent identification and categories. Additional information collected includes the individual's full name, Social Security Number (SSN), DoD ID Number, date of birth, gender, DoD affiliation, branch of service, military status, rank/rate, duty station address, mailing/home address, home/work/cell telephone numbers, home/work email addresses, name of sponsor, sponsor SSN; spouse and child information: name, date of birth, and number of children; medical information: Medical history, illness/diagnosis, and medical treatment; education information: Current grade level, provider/school name, school district, provider/school address.

Alternate OSD Federal Register Liaison Officer, Department of Defense.
Record of Commission Action
Commissioners Voting by Ballot*

Commissioners Voting: Acting Chairman Ann Marie Buerkle
Commissioner Robert S. Adler
Commissioner Marietta S. Robinson
Commissioner Elliot F. Kaye
Commissioner Joseph P. Mohorovic

ITEM:

Petition Requesting Rulemaking on Residential Elevators
(Briefing Package dated March 15, 2017, OS No. 5578)

DECISION:

The Commission voted (4-1) to deny the petition, CP 15-1, submitted by The Safety Institute, Carol Pollack-Nelson, and Cash, Krugler & Fredericks, LLC, requesting that the Commission issue a safety standard for residential elevators to address an entrapment hazard between the elevator car door and hoistway door, and direct the staff to draft a letter of denial to petitioner. Acting Chairman Buerkle, Commissioner Robinson, Commissioner Kaye and Commissioner Mohorovic voted to deny the petition. Commissioner Adler voted to defer the petition.

For the Commission:

Todd A. Stevenson
Secretary

* Ballot vote due March 24, 2017
(Commissioner Robinson extended the ballot due date from March 21, 2017.)
On November 13, 2014, The Safety Institute, Carol Pollack-Nelson, and Cash, Krugler & Fredericks, LLC, requested that the Commission issue a safety standard for residential elevators to address an entrapment hazard between the elevator car door and hoistway door. On January 7, 2015, the Office of the General Counsel docketed the request as a petition under the Consumer Product Safety Act (CPSA), Petition CP 15-1. Notice of the petition was published in the Federal Register on January 22, 2015. In the attached briefing package, staff recommends that the Commission deny the petition.

Please indicate your vote below:

I. Grant the petition and direct staff to begin developing a notice of proposed rulemaking.

___ __________________
(Signature) (Date)
II. Defer the petition.

_____________________________ ___________________
(Signature) (Date)

III. Deny the petition and direct staff to draft a letter of denial to the petitioner.

_____________________________ ___________________
(Signature) (Date)

IV. Take other action (please specify).

_______________________________ ______________________
(Signature) (Date)

Attachment: Staff briefing package: staff recommendations to the Commission on Petition CP 15-1, Petition for Residential Elevators
BRIEFING PACKAGE

PETITION CP 15-01:
PETITION FOR RESIDENTIAL ELEVATORS

March 15, 2017

For additional information contact:

Vincent J. Amodeo, Project Manager
Division of Mechanical and Combustion Engineering
Directorate for Engineering Sciences
U.S. Consumer Product Safety Commission
5 Research Place
Rockville, MD 20850
301-987-2301, vamodeo@cpsc.gov

The contents of this package have not been reviewed or approved by the Commission and do not necessarily represent its views.
Table of Contents

I. Introduction ... 3

II. Discussion .. 3
 a. Petitioners’ Request .. 3
 b. Staff’s Review of the Petition ... 5
 c. Product Description ... 5
 d. Incident Data (TAB B) .. 8
 e. Market for Residential Elevators (TAB C) ... 9
 f. Preliminary Estimates of Societal Costs ... 10
 g. Human Factors Discussion of Incident Data and Behavior (TAB D) 10
 h. Review of Voluntary Standard for Residential Elevators (TAB E)............................. 10
 i. Comments to Petition Docket .. 13
 j. CPSC Compliance Actions .. 14

III. Commission Options ... 15

IV. Recommendations ... 16

TAB A: Petition from The Safety Institute, Carol Pollack-Nelson, and Cash, Kruger & Fredericks to set safety standards for the design and installation of residential elevators 17

TAB C: Market Information and Economic Considerations Related to Residential Elevator Petition ... 38

TAB D: Human Factors Assessment for the Residential Elevator Petition 47

TAB E: Assessment of Existing Standards and Practices Related to Residential Elevators 52
Memorandum

Date: March 15, 2017

TO: The Commission
 Todd Stevenson, Secretary

THROUGH: Patricia H. Adkins, Executive Director
 Mary T. Boyle, General Council

FROM: George A. Borlase, Ph.D., P.E., Assistant Executive Director
 Office of Hazard Identification and Reduction

 Vincent J. Amodeo, Project Manager
 Directorate for Engineering Sciences

SUBJECT: Staff Recommendation to the Commission on Petition CP 15-1 Requesting Rulemaking on Residential Elevators

I. Introduction

On November 13, 2014, The Safety Institute, Carol Pollack-Nelson, and Cash, Krugler & Fredericks (petitioners) petitioned the U.S. Consumer Product Safety Commission (CPSC, or Commission) to initiate mandatory rulemaking to set safety standards for residential elevators to eliminate excessive space between the elevator car door/gate (car door) and the hoistway or swing door (hoistway door) (TAB A). The petitioners requested that the rule constrain the space between the car door and hoistway door to no more than 4 inches when measured from the inside of the hoistway door to the farthest point on the car door. On January 22, 2015, the CPSC’s Office of the General Counsel docketed the request for rulemaking as Petition CP 15-1 (80 FR 3226) under the Consumer Product Safety Act (CPSA).

CPSC staff prepared this briefing package for the Commission to consider Petition CP 15-1 Petition Requesting Rulemaking on Residential Elevators.

II. Discussion

a. Petitioners’ Request

The petitioners state that the space between the elevator car door and hoistway door in many residential home elevators, and similar elevators found in apartment and commercial buildings, is large enough to allow children up to 12 years of age to fully fit between the closed doors. If the child becomes trapped in the space when the elevator is called to another floor, the child is dragged inside the hoistway until the child’s body is crushed against the next floor’s sill.
The petitioners state that the applicable voluntary standard, American Society of Mechanical Engineers (ASME) A17.1-2013, *Safety Code for Elevators and Escalators*, allows a gap of up to 5 inches between the residential elevator car door and hoistway door, which fails to safeguard children from injuries and deaths from elevator entrapment.

According to the petitioners, in 1931, Otis Elevator Company (Otis) obtained a patent for an inexpensive 6-inch space guard to prevent child entrapment, and in 1932, Otis sent a letter to its customers warning of the hazard. In 1943, according to petitioners, Otis sent a memorandum to its service managers to ensure that building owners were aware of the entrapment hazard. In 1955, when ASME A17.1 first included code requirements for residential elevators, the gap between doors was limited to a maximum of 4 inches. However, in late 1981, the ASME A17.1 space requirement between the residential elevator car and hoistway doors changed from 4 inches to 5 inches.

The petitioners claim that the introduction of accordion-style elevator car doors for residential elevators in the early 1990s increased the entrapment hazard because the flexibility of a folding door and the deeper space between the peaks and valleys of the folding doors creates a gap between the car door and hoistway door that is greater than 5 inches.

The petitioners claim that at least 55 child deaths related to residential elevators have occurred since 1967 (based on dates of their incident data cited elsewhere in the petition, staff believes the petitioners meant 1947). Petitioners cite an August 2013 CPSC statement that an estimated 1,600 injuries associated with residential elevators were seen in emergency departments from 2011 through 2012. The petitioners only provide details on 16 incidents that occurred between 1958 and 2013, in which a child was purported to have been injured or killed while entrapped in the subject space in a residential elevator. However, a review by CPSC staff (Tab B) indicates that at least 13 of the 16 incidents did not involve residential elevators or were not related to the entrapment hazard identified by the petitioners; and the cause could not be determined in some incidents.

The petitioners state the ASME standard does not address the hazard; therefore, the petitioners request that the CPSC promulgate a mandatory standard that constrains the space between residential elevator hoistway doors and car doors to 4 inches when measured from the inside of the hoistway door to the farthest point on the car door. In addition, the petitioners expressed the belief that compliance with an amended ASME A17.1 would be low because jurisdictions are not required to adopt the latest version of the A17.1 Elevator Safety Code. Therefore, the petitioners believe mandatory rulemaking is required to address the child entrapment hazard in residential elevators.1

1 Petitioners also requested a recall to retrofit existing residential elevators. However, the Commission’s regulations provide that petitions are for the issuance, amendment, or revocation of rules.16 C.F.R. § 1051.1(a). Substantial product hazards requiring remedial action (such as repair or recall) regarding particular elevators currently in place may be appropriate under section 15 of the CPSA and reviewed by the Office of Compliance. Accordingly, only the request for rulemaking on residential elevators was docketed as a petition. 80 FR 3226 (January 22, 2015).
b. Staff’s Review of the Petition

The Commission’s petition regulations state factors that the Commission considers when examining a petition. These are: (1) whether the product involved presents an unreasonable risk of injury; (2) whether a rule is reasonably necessary to eliminate or reduce the risk of injury; and (3) whether failure of the Commission to initiate the rulemaking proceeding requested would unreasonably expose the petitioner or other consumers to the risk of injury which the petitioner alleges is presented by the product. The regulations further state that in considering these factors, the Commission is to evaluate the relative priority of the risk of injury associated with the product about which the petition has been filed and the Commission’s available resources. 16 C.F.R. § 1051.9. In addition to the petition regulations, staff considers the CPSA’s requirement that the Commission may not deny a petition on the basis of a voluntary standard, unless the Commission determines: (1) that the voluntary standard is likely to result in elimination or adequate reduction of the risk of injury and (2) substantial compliance with the voluntary standard is likely. 15 U.S.C. § 2058(i).

CPSC staff received only eight reports of incidents with victims ranging in age from 3 to 16 years that might involve entrapments between car and hoistway doors occurring between January 1, 1981, and November 10, 2016. Although CPSC staff reviewed all eight incidents to identify hazard patterns associated with residential elevator doors, in the five (5) fatal reported incidents, there was insufficient detail to determine whether an entrapment between fully closed car and hoistway doors was the cause of the fatal injuries. Nevertheless, in three nonfatal reported incidents, staff believes that entrapments occurred in the space between fully closed hoistway and accordion-style car doors. Accordingly, staff examined the potential hazard for entrapment, and assessed the current voluntary standard to determine whether such a hazard would be addressed. Staff also reviewed whether: (i) compliance with an existing voluntary standard would eliminate or adequately reduce the risk of injury addressed, and (ii) it is likely that there will be substantial compliance with such voluntary standard.

c. Product Description

ASME A17.1 defines “residential elevators” as elevators that are installed in or at private residences or in buildings providing access to a private residence, provided the elevators are not accessible to the general public. Figure 1 shows a typical residential elevator installation.

The hoistway (or shaft) in which the elevator moves is usually solidly enclosed throughout its height, except for hoistway doors at each landing access. Hoistway doors can be swinging or horizontally sliding doors or gates. Interlocks are installed to prevent the elevator car from moving unless all doors are closed and locked. Hoistway and car doors may be power-operated or manual. A typical residential elevator with a swinging exterior hoistway door and an accordion-style interior car door is shown in Figures 2. The hazard scenario can occur when a child becomes entrapped between the fully closed interior car door and the closed exterior hoistway door, as shown in Figure 3. If a child is entrapped and the elevator is called to a different landing, the child can become wedged between the moving elevator car and the stationary hoistway door and frame.
Figure 1. Typical Residential Elevator

Figure 2. Typical Residential Elevator with Swinging Hoistway Door and Accordion Car Door
Figure 3. Depiction of Child Entrapped Between Closed Car and Hoistway Doors

Hoistway doors are generally not manufactured or supplied by the elevator manufacturer. Elevator dealers or installers work with home remodeling contractors (if the elevator is being retrofitted into an existing home) and home builders (if the elevator is being installed in new construction) to design and build the hoistway or shaft in which the elevator will be installed. The contractor involved in building or modifying the house to accommodate the elevator hoistway or shaft would be responsible for building or installing the hoistway door and sill. Typically the residential elevator hoistway door matches the other internal doors in the house.

The National Association of Elevator Contractors (NAEC), Accessibility Equipment Manufacturer’s Association (AEMA), and National Association of Elevator Safety Authorities (NAESA) provide education, training, and certification programs for residential elevator installation and inspection. NAEC represents independent elevator contractors and suppliers of products and services. AEMA is an association of persons and entities interested in the growth and development of private residence elevator and accessibility equipment. NAESA members are comprised of elevator inspectors, mechanics, consultants, contractors, architects, engineers, elevator manufacturers and others interested in elevator safety, code enforcement, and technology. NAESA membership includes 328 contractors, 58 associate contractors, and 293 suppliers. Quality of Elevator Inspectors (QEI) certification is obtained through NAESA, and ASME A17.1 is listed as a required codebook for the exam.

NAEC, AEMA, and NAESA believe that education through seminars and direct communication with members is the key to enforcement of safety codes and standards. These groups contribute to the development, standardization, and proliferation of safety codes and standards, such as

3 QEI Certification requirements retrieved from https://www.naesai.org/qei-certification.
ASME A17.1, which affect the design, installation, and use of elevator and accessibility equipment, including residential elevators.

d. Incident Data\(^4\) (TAB B)

CPSC’s Directorate for Epidemiology staff reviewed the deaths and injuries associated with residential elevator entrapments that might have been due to gaps between car and hoistway doors that occurred from January 1981 to November 2016, based on reports received by CPSC staff. The staff reviewed incidents after 1981, because the ASME A17.1 space requirement between the residential elevator car door and hoistway door was changed from 4 inches to 5 inches in 1981; staff reviewed only the incidents that may have occurred as a result of the additional space gap. The memorandum also includes the estimated number of emergency department-treated injuries from January 1981 to December 2015. The data did not include complete details of every incident.

CPSC staff received reports of eight (8) incidents with victims ranging in age from 3 to 16 years that might have involved entrapments between car and hoistway doors occurring between January 1, 1981 and November 10, 2016. There were five deaths among these eight incidents. Death certificates were the source of incident reports for all five fatalities. Table 1 shows the number of deaths by year and Table 2 shows the number of deaths by age. The remaining three nonfatal residential elevator entrapment-related incidents resulted in two injuries.

CPSC staff considered all eight incidents based on reports in IPII, INDP, and DTHS to identify hazard patterns associated with residential elevator doors. In three (3) nonfatal reported incidents, entrapments occurred in the space between fully closed hoistway and accordion-style car doors. In the five (5) fatal reported incidents, there is insufficient detail to determine whether an entrapment between fully closed car and hoistway doors was the cause of the fatal injuries.

<table>
<thead>
<tr>
<th>Year</th>
<th>Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>1</td>
</tr>
<tr>
<td>1984</td>
<td>1</td>
</tr>
<tr>
<td>1986</td>
<td>1</td>
</tr>
<tr>
<td>1989</td>
<td>1</td>
</tr>
<tr>
<td>1995</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
</tr>
</tbody>
</table>

\(^4\) The CPSC databases searched were those of the Consumer Product Safety Risk Management System (CPSRMS). These reported deaths and incidents are not a complete count of all that occurred during this period. However, they do provide a minimum number of deaths and incidents occurring during this period and illustrate the circumstances involved in the incidents related to residential elevator entrapments.
Table 2: Residential Elevator Entrapment-Related Deaths by Age

<table>
<thead>
<tr>
<th>Age</th>
<th>Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
</tr>
</tbody>
</table>

Based on NEISS data, there were an estimated 131 cases involving residential elevator door entrapments of some type from January 1, 1981 to December 31, 2015. However, there was not enough information provided in the case narrative to determine whether these incidents were due to gaps between fully closed elevator car and hoistway doors that led to a child being entrapped, as described in the petitions. Although the narratives associated with these cases are very brief, most appear to involve hand and finger entrapments in elevator doors, rather than the specific hazard scenario identified by the petitioners. Therefore, there are an insufficient number of cases to generate a national estimate of emergency department-treated injuries associated with residential elevator door entrapments.\(^5\)

e. Market for Residential Elevators (TAB C)

The CPSC Directorate for Economic Analysis provided information on the market for residential elevators. Staff identified at least seven firms that supply residential elevators in the United States. Of these suppliers, three are domestic manufacturers, and four are foreign manufacturers who export directly to the United States via U.S. dealers or distributors. All three domestic manufacturers have fewer than 500 employees and would be classified as a small business under the criteria established by the U.S. Small Business Administration (SBA).

In 2013, there were approximately 125,000 swing-door elevators in use and approximately 5,000 are sold annually.\(^6\) In 2013, the typical cost of a residential elevator ranged from $15,000 to $30,000.\(^7\) Residential elevators are sold through dealers or retailer networks that are often affiliated with a manufacturer. The dealer usually arranges for the installation of the elevator.

\(^5\) According to the NEISS publication criteria, an estimate must be 1,200 or greater, the sample size must be 20 or greater, and the coefficient of variation must be 33 percent or smaller.

f. Preliminary Estimates of Societal Costs

The Directorate for Epidemiology identified fatalities that might have involved entrapment between an elevator car door and the hoistway door. However, there were insufficient details to determine whether entrapment between a fully closed car door and hoistway door was, in fact, the cause of deaths. Similarly, the Directorate for Epidemiology was unable to estimate the number of nonfatal injuries that would be addressed by the petition because there was not enough information available in the NEISS records to determine if these cases were due to gaps between elevator car doors and elevator hoistway doors, as described in the petition. Because there is insufficient information to determine the number of deaths or estimate the number of injuries associated with this hazard, staff cannot estimate the societal costs associated with this hazard.

g. Human Factors Discussion of Incident Data and Behavior (TAB D)

The Directorate for Human Factors (HF) staff provided a discussion regarding the residential elevator entrapment hazard described by the petitioners, and the effectiveness of a 4-inch gap between the elevator car and hoistway doors. (TAB D) According to staff, head size is the determining factor as to whether a young child can fit entirely within the space between the closed car and hoistway doors. If the child’s head is larger than the available space, the exterior door will be unable to close completely, thereby preventing the entrapment hazard scenario.

Even the smallest head breadths of children aged 2.0 to 3.5 years, which encompasses the youngest known victims of the hazard scenario, are likely to be larger than 4 inches. For example, the minimum and 5th percentile head breadths of children this age are 4.7 inches (11.9 cm) and 4.9 inches (12.5 cm), respectively. These anthropometric data suggest that allowing a space between the car and hoistway doors of no more than 4 inches would effectively address the entrapment hazard identified in the petition. Limiting this space to 4 inches would prevent all but the smallest of the youngest infants (e.g., small newborns) from fitting completely within the closed space, and this group is highly unlikely to be involved in the hazard scenario.

h. Review of Voluntary Standard for Residential Elevators (TAB E)

Currently, there is no CPSC regulation for residential elevators. There is one voluntary standard pertaining to the design of residential elevators, ASME A17.1 Safety Code for Elevators and Escalators. This standard specifies requirements for elevators, escalators, dumbwaiters, moving walks, material lifts, and dumbwaiters with automatic transfer devices. ASME A17.1-2013 was the existing voluntary standard at the time the petition was submitted on November 1, 2013. As discussed below, ASME has since revised the standard.

ASME A17.1 Section 5.3 applies to private residence elevators. The 2013 version of ASME A17.1 allowed a 5-inch gap between the hoistway face of the elevator hoistway door or gate (exterior door) and the elevator car door or gate (interior door).
ASME A17.1 -2013, section 5.3.1.7.2, Clearance Between Hoistway Doors or Gates and landing Sills and Car Doors and Gates. The clearance between the hoistway doors or gates and the hoistway edge of the landing sill shall not exceed 75 mm (3 in.). The distance between the hoistway face of the landing door or gate and the car door (or) gate shall not exceed 125 mm (5 in.).

Staff’s review of ASME A17.1-2013 identified three issues that could contribute to an entrapment hazard between fully closed elevator hoistway and car doors:

1. A 5-inch dimension between the hoistway and car door exceeds the head breadths of small at-risk children (see Tab D).
2. There is no requirement for how the dimension in measured. The prevalent use of accordion-style car doors allows for gaps greater than 5 inches when measured between the “Vs” of the interior door and the exterior door. This larger space increases the risk that children can fit and become trapped. The petitioners claim that such spaces could trap children up to 12 years of age.
3. There is no requirement for the rigidity of the car and hoistway doors. Thus, if either door can deform with minimal force, it can create a gap greater than 5 inches and permit older children to become trapped.

ASME A17 Residence Elevator committee membership includes 14 voting members and 11 non-voting members. The voting membership includes representation from a mix of manufacturers, retailers, distributors, and installers.

In June 2013, the ASME A17 standards committee balloted several proposed changes to A17.1-2013, which included a draft ballot for the residential elevators section. In January 2015, the proposed changes to the residential elevator requirements passed, and ASME A17.1-2016 was published on November 30, 2016. It becomes effective on May 30, 2017.

As described in Section II.b, staff considered two factors when examining this petition:

(i) Whether compliance with an existing voluntary standard is likely to eliminate or adequately reduce the risk of injury addressed.

ASME A17.1-2016 added section 5.3.1.8.3, which specifies the clearance between residential elevator hoistway doors and car doors to prevent an entrapment hazard. The new section specifies a clearance not to exceed 4 inches for five different car and hoistway door combinations.

ASME A17.1-2016 added requirements to address entrapment gap:

a. Power operated horizontally sliding hoistway and car doors. For this combination, the measurement of the leading edge of the doors shall not exceed 100 mm (4 in.).
b. **Swinging hoistway doors and folding car doors.** For this combination, when both doors are in the fully closed position, the space between the doors shall reject a 100 mm (4 in.) diameter ball at all points.

c. **Swinging hoistway doors and car gates.** For this combination, the space between the doors shall reject a 100 mm (4 in.) diameter ball at all points.

d. **Swinging hoistway doors and power operated horizontally sliding car doors.** For this combination, where the car door(s) cannot be closed until after the hoistway door is closed, and the car door(s) automatically open when the car is at a landing and the hoistway door is opened, the measurement between the hoistway face of the hoistway door and the hoistway face of the car door shall not exceed 100 mm (4 in.). Where either door can be disconnected from the operator (control) and then allow the user to operate the door manually, 5.3.1.8.3(e) shall apply.

e. **Swinging or horizontally sliding hoistway doors and manually operated horizontally sliding car doors.** For this combination, when both doors are in the fully closed position, the space between the doors shall reject a 100mm (4 in.) diameter ball at all points.

ASME A17.1-2016 also added section 5.3.1.8.2 (d), which specifies the strength and deflection of doors, gates, and their guides, guide shoes, track, hangers. This section addresses the hazard of an entrapment space created between the hoistway door and elevator car door due to one or both doors deflecting and creating a hazardous gap.

ASME A17.1-2016 added requirements to address deflection of doors:

1) Horizontal sliding car doors and gates when fully closed shall be designed and installed to withstand a force of 335 N (75 lbf) applied at any location on the door without exceeding a deflection of 19 mm (0.75 in.) and without permanent deformation.

2) Folding car doors when fully closed shall be designed and installed to withstand a force of 355 N (75 lbf) applied using a 100 mm (4 in.) diameter sphere at any location within the folds on the door without exceeding a deflection of 19 mm (0.75 in.) and without permanent deformation.

Staff believes that the current edition of ASME A17.1-2016 addresses the petitioner’s concern for new residential elevator installations by: (1) specifying a clearance of no more than 4 inches between the elevator car and hoistway doors, (2) specifying a test method to determine the clearance is not exceeded, including at all points along a closed accordion style door, and (3) specifying a rigidity of the elevator doors. According to CPSC human factors staff (TAB D), limiting the dimension between the car and hoistway door to no more than 4 inches will address the entrapment hazard because the only children who would likely fit completely within this space would be the smallest of the youngest infants (e.g., small newborns). These children are not known to be, and are highly unlikely to be, involved in the hazard scenario identified in the petition. No entrapment incidents are associated with infants under 3 years of age.

The 4-inch requirement addresses the hazardous 5-inch dimension between the hoistway and car door and exceeds the head breadths of small at-risk children by removing the potential for accordion style car doors to create gaps greater than 5 inches when measured between the “Vs”
of the car door and the hoistway door. The requirement specifying the rigidity of the car and hoistway doors ensures that the doors cannot become deformed with minimal force and create a hazardous gap.

ASME also has a standard for existing elevators, ASME A17.3-2015, Safety Code for Existing Elevators and Escalators, which is currently in the ballot process to require the same residential elevator door clearances and rigidity test method as required under ASME A17.1-2016. These changes would address potential entrapment hazards on existing elevators. CPSC staff will continue to monitor ASME A17.3-2015 standard activities.

(ii) Whether substantial compliance with the voluntary standard is likely.

Staff believes the revisions in ASME A17.1-2016 would address the potential the hazard, because the only children who would likely fit completely within the 4-inch space would be the smallest of the youngest infants (e.g., small newborns). These children are not known to be, and are highly unlikely to be, involved in the hazard scenario identified in the petition.

Staff reviewed the elevator building codes of all 50 states. Almost all the states reference ASME A17.1 in the state elevator building code requirements. However, many states need to update their references to the latest version of the standard on their website. The ASME A17 Committee has established the A17 Regulatory Authority Council, which facilitates the dissemination of the latest code changes to jurisdictional authorities. Staff will contact ASME to alert the state regulatory bodies that the newest version (2016) is available and should be reflected if the latest version is not indicated in the existing state code. Staff believes that by working with the ASME A17.1 Committee to alert state regulatory bodies to update references to the current standard, substantial compliance to the voluntary standard will be more likely.

Staff believes that industry will be alerted to the new requirements in the voluntary standard because the committee that developed the revised standard is comprised of elevator manufacturers and elevator installers. In addition, associations, such as NAEC, AEMA, and NAESA, promote the latest safety information to elevator manufacturers and installers through the HomeSafe Campaign (HomeSafe), which provides homeowners, manufacturers, and installers with information on how to install, operate, and maintain their home elevators safely. Membership in these organizations is comprised of elevator inspectors, mechanics, consultants, contractors, architects, engineers, elevator manufacturers and others interested in elevator safety, code enforcement, and technology. NAESA members include 328 contractors, 58 associate contractors, and 293 suppliers. Quality of Elevator Inspectors (QEI) certification is obtained through NAESA and ASME A17.1 is listed as a required codebook for the exam, and the 2016 revision will become mandatory code for certification in fall 2017.

i. Comments to Petition Docket

On January 22, 2015, a notice of petition requesting comments was published in the Federal Register (80 FR 3226). The comment period ended on March 23, 2015. The Commission received several comments supporting the petition request. Kids in Danger (KID) supported the
need for a mandatory standard to address the entrapment hazard posed by certain residential elevators noting that the hazard is not readily apparent to elevator owners. KID also pointed out that safe alternatives and “fixes” exist and can be made available to elevator owners. Two submissions were received after the comment period, Handi-Lift and Dennis Brickman. Handi-Lift disagreed with the petitioners’ incident data and how it was derived; however, Handi-Lift agreed with the petitioners’ claim that an excessive gap between the elevator car and hoistway doors presents a serious safety issue that can allow children to become entrapped between fully closed car and hoistway doors. Handi-Lift stated that the industry has taken steps to correct the hazard by adopting the ASME requirements on door clearances, and also indicated that residential home elevator safety may be advanced through education. Dennis Brickman reported an elevator incident that occurred in Little Rock, AR in February 2017, when a 2-year-old was found in an elevator shaft. In addition, Brickman submitted three technical papers that address accident reconstruction incidents associated with residential elevator child entrapments.

Response to Comments: Staff agrees that a potential entrapment hazard exists for children from the excess gap allowed between the car door and hoistway doors that were permitted in the earlier version of the ASME A17.1 voluntary standard. However, staff believes that 2016 revisions to the standard address the hazard by reducing the maximum gap between the internal and external elevator doors from 5 inches to 4 inches, and by specifying an effective test method for measuring the gap and door rigidity requirements. Staff believes that a maximum gap of 4 inches between the interior and exterior doors of residential elevators, combined with the deflection limits, will address the entrapment hazard because the only children who would likely fit completely within this space would be the smallest of the youngest infants (e.g., small newborns). These children are highly unlikely to be involved in the hazard scenario identified in the petition. Staff is also investigating the incident reported in Little Rock, although it is unclear whether the accident occurred due to the excess gap between the car door and hoistway door.

j. CPSC Compliance Actions

CPSC has not recalled any elevators related to the entrapment hazard identified by the petitioners. CPSC staff could not identify any specific elevator models or manufacturers whose installations revealed design defects or installation defects that caused a substantial product hazard resulting from an excess space gap between the car door and hoistway. However, staff has noted that space guards and similar retrofit products are available in the marketplace for approximately $90. Moreover, most of the industry participates in the HomeSafe Campaign (HomeSafe), which provides homeowners, manufacturers, and installers with information on how to install, operate, and maintain their home elevators safely. The participants in this campaign include AEMA, NAEC, NAESA, and ThyssenKrupp Access Corp.

Staff did initiate three recall programs related to residential elevators. Although none of the recalls was related to the entrapment hazard identified in the petition, there were issues related to the improper opening or closing of residential elevator doors.

1) CPSC Recall 12-750 Residential elevator hoistway doors can unlock and open without the elevator car present. There were no injuries related to the hazard.
2) CPSC Recall 15-102 Residential hydraulic elevators can operate while the interior gate door is open, posing a crushing hazard. Three reported incidents with one catastrophic brain injury to a 10-year-old boy.
3) CPSC Recall 16-238 Residential elevators with plastic electro mechanical door locks (EMDLs) that can operate with the hoistway door open without the elevator car present. There were no injuries related to the hazard.

III. Commission Options

In response to the petition, the Commission may:

1. **Grant petition CP15-01 and initiate rulemaking:**

 If the Commission concludes that the available information indicates the risk of injury from entrapments due to excessive space between the hoistway and car door of residential elevators can be addressed by a mandatory standard as requested by the petitioner, the Commission may grant the petition. Granting the petition does not mean that the Commission would necessarily issue a rule in the specific form requested in the petition.

 By granting the petition, the Commission could begin rulemaking if the Commission determines that a rule is necessary to limit the space between the car door and hoistway door of residential elevators to no more than 4 inches when measured from the inside of the hoistway door to the farthest point on the car door.

 Staff believes the revision made to ASME A17.1-2016 specifies adequate requirements to constrain the space between the car door and hoistway door of residential elevators to no more than 4 inches. Therefore, staff does not recommend that the Commission grant the petition.

2. **Deny petition CP15-01**

 If the Commission determines that a mandatory rule to address the hazard that petitioners identify is not warranted, the Commission could deny the petition.

 Staff believes that the revision to ASME A17.1 for residential elevators addresses the petitioners concerns for entrapment between car and hoistway doors by: (1) specifying a clearance of no more than 4 inches between the elevator car and hoistway doors, (2) specifying a test method to determine the clearance is not exceeded, including at all points along a closed accordion style door, and (3) specifying a rigidity of the elevator doors. In addition, staff believes that substantial compliance with the voluntary standard will be likely if staff works with the ASME 17.1 Committee to alert state regulatory bodies of the new requirements in the voluntary standard. Therefore, staff recommends the Commission deny the petition.

 Denying the petition does not preclude the Commission from taking action to address the risk of entrapment in residential elevators.
3. **Defer decision on petition CP15-01**

If the Commission concludes that more information is required before the Commission can decide whether to grant or deny the petition, the Commission may defer a decision and direct the staff to collect additional information or take other action.

Deferring the petition does not preclude the Commission from initiating future rulemaking in response to this or another petition.

IV. Recommendations

Staff recommends that the Commission deny the petition. Staff reviewed the voluntary standard to assess whether there could be a potential for an entrapment hazard between the car door and the elevator door. Staff’s review showed that the current voluntary standard for residential elevators, ASME A17.1-2016, *Safety Code for Elevators and Escalators*, addresses the potential hazard of child entrapment between the elevator car door and elevator hoistway doors. In addition, if state building codes are updated to require safety inspections that meet the ASME A17.1-2016 requirements by fall 2017, staff expects that substantial compliance to the revised standard for new residential elevators will be likely. Staff will work with the ASME A17 committee to alert state regulatory bodies on the new requirements in the voluntary standard.
TAB A: Petition from The Safety Institute, Carol Pollack-Nelson, and Cash, Kruger & Fredericks to set safety standards for the design and installation of residential elevators
UNITED STATES CONSUMER PRODUCT SAFETY COMMISSION

Petitioners:
The Safety Institute
Carol Pollack-Nelson, Ph.D., Independent Safety Consulting
Cash, Krugler & Fredericks, LLC

PETITION FOR RECALL TO REPAIR/RETROFIT AND RULEMAKING

Petitioners, The Safety Institute, Carol Pollack-Nelson, and Cash, Krugler & Fredericks, LLC (hereinafter "Petitioners"), pursuant to 16 C.F.R. § 1051 Procedure for Petitioning for Rulemaking, request that the U.S. Consumer Product Safety Commission initiate mandatory rulemaking to set safety standards for the design and installation of residential elevators to eliminate excessive space between the elevator car door/gate (interior door) and hoistway or swing door (exterior door).

In many home elevators, and similar versions found in older apartment and commercial buildings, the clearance between the two doors is large enough to allow children as old as 12 years to fit between them. When the elevator is called to another floor, the hoistway door automatically locks, and the child's body is carried along with the elevator car until it meets the obstruction of the sill, where the child's body — usually the head — is crushed. Industry has been aware of these dangers for more than 80 years, but has failed to adopt an appropriate, safe voluntary standard to address this design flaw. At least 55 child deaths have occurred since 1967; the most recent known death occurred in 2009. Since 2010, there have been three serious permanent debilitating injuries resulting from child entrapment.

A mandatory standard is required because the gap between the doors that is permitted by the voluntary standard has caused deaths and serious injuries. Efforts to work through the voluntary standards process, as described in this petition, have not adequately addressed the defect and therefore, have not reduced the risk of harm. In fact, 35 years ago, the voluntary standards committee actually changed the dimensions for residential elevators from a maximum gap of 4 inches between the two doors, to the less-safe 5-inch gap.

The petitioners also request that the U.S. Consumer Product Safety Commission order a recall (to repair) of all residential elevators that allow a gap between the hoistway and swing doors of more than 4 inches. Recalled defective doors should be retrofitted with a device that would either detect the presence of a child or small adult in the door path and prevent the elevator from operating or physically fill the gap to prevent children and small adults from becoming entrapped.

Industry Knowledge of Design Defect

The elevator industry has known about the entrapment hazard in swing door elevators for
at least eight decades. In 1931, Otis Elevator Company obtained a patent for an inexpensive 6-inch space guard to prevent child entrapment. In 1932, Otis sent a letter to its customers warning them about this hazard. In 1943, the company followed up; an Otis General Service Manager sent an inter-office memo reiterating the dangers of excessive space between the hoistway doors and the threshold. The elevator company was concerned that buildings may have changed hands since the original alert went out, leaving the current owners unaware of the threat, or that the original owner ignored the warning or installed a space shield, which fills the gap and makes it impossible for a child to fit in the space, but failed to remove projecting hardware.

In 1955, the first Residence Elevator Code addressed the entrapment issue. ASME Elevator Safety Code limited distance between the doors to a maximum of 4 inches. (At the time, there were no accordion doors on elevators — this was a flat-to-flat measurement.) But, in 1981, for unknown reasons, the ASME changed the rule to widen the gap, allowing a maximum of 5 inches between the doors.

ASME standard A 17.1, Sec. 5.3.1.7.2 states:

Clearance Between Hoistway Doors or Gates and Landing Sills and Car Doors or Gates. The clearance between the hoistway doors or gates and the hoistway edge of the landing sill shall not exceed 75 mm (3 in). The distance between the hoistway face of the landing door or gate and the car door or gate shall not exceed 125mm (5 in.).

In 1950, Otis General Service Manager again noted "recent occurrence of accidents" caused by excessive space between the hoistway and elevator car doors, suggesting that many elevators remained unremedied. A 1963 memo noted the rise in liability claims against the company and suggested a survey of all Otis elevators under a service contract with sub-standard safety conditions — including the condition of too much space between the hoistway and elevator doors.

In the early 1990s, the residential elevator industry introduced accordion doors for home elevators; this only increased the entrapment hazard. The accordion door's flexibility and its peaks and valleys create excess space, above and beyond the 5-inch gap permitted by

1 Subject: Automatic Elevator Space conditions Between the Hoistway Doors and the Threshold; H.R. Otis; Otis Elevator Company; September 30, 1943.
2 Subject: Automatic Elevator Space conditions Between the Hoistway Doors and the Threshold; H.R. Otis; Otis Elevator Company; September 30, 1943.
4 Standard A 17.1, Sec. 5.3.1.7.2; ASME
5 Terry Gormley Speaks About Tucker Smith and the Campaign to Repair 4,000 Guards on OTIS Elevators; Smith Elliott Smith & Gormley; http://www.fairwarning.org/wp-content/uploads/2013/12/TuckerSmithArticle.pdf
6 Terry Gormley Speaks About Tucker Smith and the Campaign to Repair 4,000 Guards on OTIS Elevators; Smith Elliott Smith & Gormley; http://www.fairwarning.org/wp-content/uploads/2013/12/TuckerSmithArticle.pdf
the ASME Standard. A child or small adult can fit into those valleys, and when the
hoistway (exterior) door is closed and the elevator moves, they can be seriously injured
or killed. Some elevator designers, installers and others purportedly following the ASME
A 17.1 5-inch rule do not take into account the extra space created by the valleys, which,
in effect, can increase the gap by an additional three inches or more.

In 2003, the Otis Elevator Company, as part of a settlement with the family of an eight-
year-old boy who died after becoming entrapped between elevator doors, launched a
national safety campaign, equipping 4,000 elevators with space guards. Otis also sent
letters to other manufacturers urging them to check the size of the gap between elevator
doors and offered free space guards for Otis-manufactured elevators.7

Over the years, a number of tragic accidents have occurred on elevators
with swing-type hoistway doors, including the deaths of numerous
children. These accidents have demonstrated the safety risk posed by
elevators with swing doors. If the hoistway door and car gate are both
closed, the space between them would be wide enough to fit a child or
small adult. Should the elevator be called up while the person is in that
space, serious injury or death is likely to result. These tragedies can be
avoided.9

In addition, Otis’ Director of Worldwide Standards, Lou Bialy, highlighted the danger
posed by this defect in a trade publication, Elevator World, entitled Space Between Swing
Doors Collapsible Gates Still A Hazard.10 As recently as March 2014, elevator experts
James Filipponi and John Koshak reiterated the dangers of child entrapment in another
Elevator World article entitled Solutions Needed to Ensure Children’s Safety.

Safer and Feasible Alternative Designs

Safer design options reduce the gap between the hoistway and car doors. Such designs
recognize the ergonomic factors that contribute to the hazard. For example, as the
CPSC’s own anthropometry data show, children’s heads are larger than their bodies, and
the most vulnerable children, ages 2-3.5 years, have head breadths of less than five
inches.10

The CPSC and others have identified 4 inches as a key element of safe design in other
contexts, such as the allowable space between staircase spindles, specifically to prevent
head entrapment.11 The CPSC’s Public Playground Safety Handbook recommends a
more conservative maximum allowable gap of 3.5 inches, specifically to prevent a child’s

7 Letter to National Wheelchair; Raymond Moncini; Otis Elevator Company; December 8, 2003
8 Letter to National Wheelchair; Raymond Moncini; Otis Elevator Company; December 8, 2003
9 Space Between Swing Doors Collapsible Gates Still A Hazard; Lou Bialy; Elevator World; May 2003
10 Change in the Physical Dimensions of Children in the United States; U.S. Consumer Product Safety
Commission; April 27, 1998
11 Ergonomics and Design Review; Rani Leader; ThyssenKrupp Access Corporation; October 22, 2012
head from entering the space and becoming entrapped.¹²

In addition, history shows that the design alternatives are feasible. From 1955, when ASME's first residential elevator code was published, until 1980, when the dimension was changed, the voluntary industry standard called for a maximum gap of 4 inches between the two doors.

Individual states have more stringent standards than those set by ASME. Massachusetts' elevator code, for example, restricts any gap between the hoistway doors and the car doors or gates to 3 inches.¹³ In the state of Georgia, an effort to follow suit is underway. The amendment to the International Residential Code proposed by the State Fire Marshal's office, which oversees elevator codes, reads:

Passenger elevators, limited-use/limited-application elevators or private residence elevators shall have hoistway landing openings that meet the Georgia amended requirements of ASME A17.1 Sections 5.3.1.1 and 5.3.1.7.2. The clearance between the hoistway doors or gates and the hoistway edge of the landing sill shall not exceed 3/4 inch (19 mm). The distance between the hoistway face of the landing door or gate and the car door or gate shall not exceed 3 inches (75 mm).¹⁴

This change is scheduled to be finalized by the Georgia Department of Public Affairs in November and go into effect in January 2015.

A reduction of the clearance is feasible because it does not change the manufacture of the elevator itself, rather it guides the installation of the hoistway door. Currently, in residential settings, the exterior door is typically set flush to the wall, like any other door in a home. This setting typically creates the excessive gap. Installers can exacerbate the gap by misinterpreting the 5 inch rule in the voluntary standard as measuring the distance between the closer points between the doors, rather than the furthest point. In fact, manufacturers' designs often instruct installers to measure between the hoistway door and the peak of an accordion car door, rather than to the valley. Those who do not take into account the extra space beyond the peak of the accordion door can create up to 8 inches of refuge space, which permits entry by a child.

Voluntary Standards Have Not Prevented Risk of Harm

In 83 years, the industry not only has failed to address the entrapment hazard, it actually increased the potential for injury and death by re-writing the voluntary standard to allow a wider gap between the hoistway and exterior door.

¹² Public Playground Safety Handbook; U.S. Consumer Product Safety Commission; undated
¹³ 5.3.1.7.2 Clearance Between Hoistway Doors or Gates and Landing Sills and Car Doors or, Gates; 5.3.1.7.2 Protection of Hoistway Openings; 524 CMR Board of Elevator Regulations; PDF Pp. 214, September 28, 2012
¹⁴ Georgia State Amendments to the Residential Elevator Code for One and Two-Family Dwellings; August 13, 2014
The voluntary ASME standard has failed to safeguard children from injuries and deaths. According to CPSC's own figures, there were an estimated 1,600 injuries associated with residential elevators in just a two-year period.

The most recent figures from CPSC's NEISS system show that an estimated 1,600 injuries associated with residential elevators and lifts were seen in emergency departments from 2011 through 2012. CPSC only has jurisdiction over elevators customarily used by consumers in a residential setting. Some of those injuries included children becoming entrapped in the gap of residential elevators, tragically leading to fatalities and serious injuries. The agency has an active and ongoing compliance investigation regarding the safety of residential elevators and the entrapment hazard they can present. While CPSC investigates the role and responsibilities of manufacturers and installers when it comes to the safety of residential elevators, owners of residential elevators should take steps to ensure children do not have unsupervised access to in-home elevators.

In addition, the entrapment hazard has led to a number of child deaths. In the early 1990s, the Otis Elevator company revealed to the plaintiffs in a New Jersey case the deaths of severe injuries to 34 children from 1983-1993 in the southern New York and New Jersey area alone and an additional 16 deaths from 1947 to 1963. More recently, the petitioners are aware of five more deaths and two catastrophic injuries in which children were entrapped and crushed in residential elevators.

The ASME Voluntary Standards Process Has Been a Failure

The ASME standards-setting process has not produced a substantive change to the voluntary residential elevator standard in nine years of committee meetings, despite members repeatedly bringing up the excessive gap issue.

In 2005, the A-17 committee began discussing revisions to the "Clearance" section of the standard. Several members of the A-17 Committee lobbied to change the Clearance dimensions of the standard back to the original dimensions. Minutes of the committee meetings between September 2006 and June 2007 show that some committee members expressed concern about the hazardous gap permitted by the standard. However, the group rejected any proposals for revising the standard to require tighter clearances and more precisely described measuring points to ensure that home elevators would comply.

16 Email to The Safety Record Blog; Scott Wolstein; US Consumer Product Safety Commission; August 27, 2013
17 The Elevator Design Hazard That's Been Killing Children for Decades; The Safety Record Blog; July 11, 2013
18 Elevator Safety Flaws Persist, Despite History of Tragic Accidents; Shawn Hubler; Fair Warning; December 8, 2013
19 Appendix A: Elevator Entrapment Deaths and Injuries
20 A17 Residence Elevator Committee; Minutes; September 19, 2006–June 18, 2007
For example, Calvin Rogler, chief of the state of Michigan's Elevator Safety Division, suggested that the language be modified to only allow for a 4-inch clearance, because when accordion doors are used, the clearance from the face of the hoistway door to the furthest part of the accordion door resulted in a clearance of 5.5-inches. At one such meeting, he said: "The clearances between the car and the hoistway door must be reduced to provide an acceptable level of safety for the families using this device. Accidents dealing with this area have been deadly." 20

Another committee member, Richard Gregory, an elevator consultant, described an incident that occurred in Michigan in which a 10-year-old boy who had slipped between the hoistway door and the accordion door was fatally crushed when the lift was called to a floor below. It would be easy to reduce clearances in elevators with wide gaps with products readily available on the market, he said in an email to the committee chairman. 21

"It's easy, it saves lives. So it should be done," Gregory wrote. 22

Despite repeated attempts to persuade the majority of members that the excessive gap was a serious safety problem that resulted in a child's death, the committee decided that the status quo should remain: "The committee feels assured that the measurement criteria presented will provide for adequate safety. In addition, the 5-inch dimension has been in the standard for many years." 23

Not only has the subcommittee failed to revise the standard in order to adequately address this hazard, they recently considered making the Clearances section of the standard even more lenient. At the first quarterly meeting of 2013, the committee was poised to codify the latest revisions, which included measuring instructions that would have allowed designers to consider the shortest point when measuring the clearance, instead of the farthest point. Fortunately, a member of the larger standards committee made an impassioned and successful plea to reject the change.

More recently, the committee shelved a proposal to reduce the gap between the doors on existing elevators to a 4-inch maximum, while it awaits the results of an internal hazard analysis. Although the A17 committee had been looking at this issue since 2005, they just voted to perform a hazard analysis last year. The committee also weighed a proposal to clarify the rule and make explicit that the 5-inch maximum dimension/constraint must be measured between the farthest points between the doors - not the closest. Even if the Committee immediately approved both, any rule change is effectively delayed for another three years, when the next edition of the Elevator Safety Code is published.

20 A17 Residence Elevator Committee; Minutes; September 19, 2006–June 18, 2007;
21 Accordion Door Accident; email; Richard Gregory to Al Versliffe; June 27, 2006
22 A17 Residence Elevator Committee; Minutes; September 19, 2006–June 18, 2007;
23 Carl Rogler; PDF pp. 10; Responses to Letter Ballot #05-1123 Comments; November 28, 2005

TK_000052
We have no reason to believe that will happen. Nine years have elapsed since the ASME committee first considered modifying requirements for clearances. To date, the standard still has not been revised to effectively address the hazard. Clearly, industry has demonstrated its unwillingness to correct the problem on its own and there is insufficient industry buy-in supporting the change. For example, when one member suggested amending the rule to reflect that the measurements should be taken from the farthest points, it was rejected: "The Committee feels assured that the measurement criteria presented will provide for adequate safety." In another instance, a small group within the committee voted against the proposed rule, with one member arguing: "Those clearances between the car and hoistway doors must be reduced to provide an acceptable level of safety for the families using this device. Accidents dealing with this area have been deadly for those involved." Even when confronted with the history of child deaths, the response was: "The committee feels assured that the measurement criteria presented will provide for adequate safety. In addition, the 5 inch dimension has been in the standard for many years."

More importantly, even if ASME A17 amends the rule, its adoption is not automatic. Any jurisdiction (whether city, county or state) may adopt any version of the A17 Elevator Safety Code. Many jurisdictions are decades behind. For example, some states today use the 2004 or older versions, even though there have been many subsequent versions. Other jurisdictions, such as South Carolina, do not have any code for residential elevators and do not require permitting or inspections for single family residential elevators. Children represent a vulnerable population who need the protection of a strong mandatory standard when the voluntary standards process has repeatedly failed to offer reasonable and feasible protections against potentially grievous injury.

The ASME’s standard-setting process, unfathomable delays and rationale for rejecting proposed changes is at odds with the purpose of developing a safety standard. Industry’s inaction is even more egregious given that methods for addressing the hazard are technologically and economically feasible and have been for many years. Further, to conclude that a standard should not be changed simply because it has existed for many years is not the result of a credible standards-writing process.

Ironically, the elevator industry has launched the homeSAFE (Safety Awareness for Elevators) Campaign, to increase home elevator safety awareness. The campaign is sponsored by Association of Members of the Accessibility Equipment Industry (AEMA), National Association of Elevator Contractors (NAEC), National Association of Elevator Safety Authorities International (NAESA) and ThyssenKrupp Access. The HomeSAFE Campaign recommends that homeowners make sure the gap between the accordion and swing doors be no more than 4 inches, even as the ASME committee refused to codify this advice into its own standards:

24 TN85-803 Residence Elevator Committee, Attachment 8C, Pg. 5
25 TN85-803 Residence Elevator Committee, Attachment 8C, Pg. 6
26 TN85-803 Residence Elevator Committee, Attachment 8C, Pg. 6
Measure the gap between the elevator door and the hoistway door to verify it is not wide enough for a child to become entrapped. ASME Codes require the space be no more than 5 inches; but for additional safety precautions, homeSAFE recommends the space between the hoistway door and cab gate is no more than 4 inches. Features such as space guards or special hoistway doors can help reduce the space between the elevator door and the hoistway door. Other safety devices such as light curtains also may help detect someone in the space between doors.27

Petition Request

The Petitioners hereby formally submit this Petition for Rulemaking under the authority and process set forth in 16 CFR § 1051 Procedure for Petitioning for Rulemaking and request the Commission to promulgate a mandatory standard that constrains the space between residential elevator hoistway doors and cab doors/gates to 4 inches when measured from the inside of the hoistway door to the farthest point on the cab door/gate (i.e., the valley for an accordion door).

Under Sec. 9 [15 U.S.C. § 2058] Procedure for Consumer Product Safety Rules, the Commission must meet certain criteria to commence a rulemaking: identify the product and the risk of injury associated with that product, ensure a rule is in the public interest, and consider the adequacy of any already existing voluntary standard in eliminating or adequately reducing an unreasonable risk.

The petitioners believe that the record clearly establishes the hazard – the entrapment risk posed by excessive space between the inner and outer elevator doors; the significant risk of injury and fatality; and the failure of the voluntary standard to mitigate or eliminate the hazard despite the feasibility of a technical fix.

To ensure the safety of existing elevators, the Petitioners also request that the Commission commence a recall to repair, requiring all manufacturers to retrofit existing elevators to prevent children and small adults from becoming entrapped. Several technologies exist to eliminate this hazard. For example, light curtains use light beams and sensors to detect a presence between the doors and interrupt the operation of the elevator if something or someone is in this space. This would prevent the scenario of the elevator car being called to another floor while a child is entrapped between the car door/gate and the hoistway door. Door baffles (or space guards) are another potential solution. These after-market space blockers fill the excess clearance space, removing the opportunity for children or small adults to fit themselves in the space between the car and hoistway doors.

The Petitioners appreciate the Commission’s consideration of this request. We are available to discuss this petition at your convenience.

27 https://homesafecampaign.com/safe-home-elevator-installation/
Respectfully submitted,

The Safety Institute
By: Jamie Schaefer-Wilson
Executive Director
340 Anawan Street
Rehoboth, MA 02769
646-644-6320
jamie@thesafetyinstitute.org

Independent Safety Consulting
By: Carol Pollack-Nelson, Ph.D.
13713 Valley Drive
Rockville, MD 20850
301-340-2912
pollacknel@comcast.net

Cash Krugler & Fredericks, LLC
By: Andrew Cash, David Krugler
5447 Roswell Rd, Atlanta, GA 30342
404-659-1710
dkrugler@ckndf.com
acash@ckndf.com

Interest of Petitioners
This petition is brought by three organizations on behalf of all children and their families affected by residential elevators:

The Safety Institute is a 501 (c) 3 non-profit organization whose focus is on injury prevention and product safety. The Safety Institute examines areas of injury prevention and product safety across a broad spectrum. The Institute bases its plans and priorities on issues that require greater study and emphasis, as well as those which may be underserved by other organizations and advocates. The Institute gives special attention to those areas of emerging importance to injury and product safety, including the effects of new and changing technologies.

Cash, Krugler & Fredericks, LLC is a law firm representing victims and their families in cases involving catastrophic injury and death. The firm pursues this petition on behalf of the families with whom they have worked whose children have suffered brain injuries, paralysis and other disabilities due to residential elevator hazards.
Appendix A

Elevator Entrapment Deaths and Injuries

According to CPSC statistics, there were an estimated 1,600 injuries associated with residential elevators in a two-year period. The following incidents are a small sample of the injuries and deaths:

1958: Three-year-old girl died, caught between the inner grill and outer door

- California
 - The three-year-old girl ran ahead to press the button for the automatic elevator as her babysitter prepared to leave;
 - The elevator arrived at the fourth-floor and the outside door opened. The girl was caught between the inner grill and outer door, which closed behind her;
 - Somebody pressed the button on another floor and the young girl was crushed to death.¹

1961: Seven-year-old boy died, crushed when he became wedged between the elevator door and the gate

- New Jersey
 - The seven-year-old boy who may have been playing or hiding from a playmate when the incident occurred, became wedged between the elevator door and the gate;
 - The boy’s body was found wedged in the space between the door and the gate of the elevator, which was stuck between the third and fourth floors of the apartment building.²

1962: Three-year-old girl died, caught between the wall and the moving elevator

- New York
 - Three-year-old girl was crushed to death between the wall and the moving elevator;
 - Police said the victim somehow managed to get the inner door open and took hold of the fourth-floor outer door as the self-service elevator descended in a building.³,⁴

¹ Charleston Daily Mail, Thursday, May 8, 1958, Page 1; http://newspaperarchive.com/us/west-virginia/charleston/charleston-daily-mail/1958/05/08/
⁴ Toledo Blade, May 23, 1962; http://news.google.com/newspapers?id=1350&date=19620523&id=RbxOAAAAIBAJ&sjid=MgEEAAAAIBAJ&pg=6627,5181227
1976: Seven-year-old boy died, trapped between the outer door and the wall of the elevator shaft

New Jersey

- The seven-year-old boy became trapped in the building's elevator between its outer door and the wall of the elevator shaft;
- The elevator was activated and the boy was dragged up to the third floor;
- Another child who was running up a nearby stairway to beat the elevator opened it, saw the victim wedged within it, and ran to seek help;
- Rescue workers worked for four and one-half hours to free the child; he died while still trapped.\(^5\)

1977: Ten-year-old girl; crushed in an elevator between the hoistway door and the gate

New York

- Ten-year-old girl was crushed in an elevator between the hoistway door and the gate.\(^6\)

1988: Seven-year-old boy sustained broken leg, bruising and scarring

New Jersey

- The seven-year-old boy was getting out of the elevator at a basement landing when he found himself trapped as the car gate closed behind him and the hoistway door was not open;
- Someone else opened the car, and it ascended with the young boy stuck between the car gate and hoistway door.\(^7\)

1986: 12-year-old boy died, trapped between elevator door and swing gate

New Jersey

- The 12-year-old boy became wedged between the swing hatch door and the elevator car gate;
- The elevator received an up call and traveled away from the basement landing, crushing the child between the wall immediately above the basement door header and the 2\(\text{nd}\) landing sill and leading edge of platform with toe guard.\(^8\)

\(^6\) The Herald Statesman, August 20, 1978; http://lithoarchive.com/newspaper/2016/Yorkers%20NY%20Herald%20Statesman/Yorkers%20NY%20Herald%20Statesman%201978%200820/3a

\(^7\) Liberty Manual, accident report, December 9, 1980

\(^8\) Our Elevator company; accident report, April 14, 1987
1997: Four-year old girl died, caught between floors in a residential elevator in Illinois

- Four-year-old girl was caught between the floors of an elevator in a residential building;
- Her mother had gotten off before her and the other children pressed the call button. 9

2001: Eight year-old boy died, entrapped between swing door of residential elevator in Maine

- The 8-year-old boy pushed the call button and opened the swinging door; the door closed behind the boy; before he could open the collapsible gate a maid on the second floor pushed the call button, interlocking the outer door and trapping the child in the gap between the outer swing door and collapsible gate;
- The young boy was nearly decapitated and died in front of his family;
- The distance between the outer swing door and collapsible gate was seven inches.
- Otis settled and sent notices to the elevator industry about the hazard. 10,11

2002: Two sisters, ages six and seven died, heads crushed in residential elevator in New Jersey

- Two girls were lying down in the elevator with their heads partly across the threshold as the car rose;
- The safety feature was disabled allowing it to descend while the girls' heads stuck out past the gate;
- They died when their heads were wedged against part of the shaft. 12

10 Space Between Swing Doors Collapsible Gates Still A Hazard; Lou Haly; Elevator World; May 2003
11 Terry Gormley Speaks About Tucker Smith and the Campaign to Repair 4,000 Guards on OTIS Elevators; Smith Elliott Smith & Gormley; http://www.fairwarning.org/wp-content/uploads/2013/12/TuckerSmithArticle.pdf
2003: Ten-year-old boy died, entrapped and crushed in swing door of residential
elevator equipped with an accordion door

- Michigan

- The ten-year-old boy got caught between the hoistway door and the accordion
doors;
- The elevator started going down crushing the boy who then suffocated;
- The distance to the peak of the accordion door was approximately 5", but valleys
 were much deeper;
- The family's expert notified ASME A17 Residence Elevator Committee of this
 incident in 2006.12

2004: Five-year-old boy died, crushed between elevator door and hoistway door

- Texas

- The five-year-old boy entered the elevator with his two-year-old brother in their
 family's multistory condominium;
- The accordion-style gate was not closed, allowing the boy's body to be extended
 outside the door as the elevator started moving up;
- As the elevator ascended, his head was crushed by the second floor landing.14,15

2006: Eleven-year-old girl died, entrapped between the elevator and shaft walls

- North Carolina

- The 11-year-old girl was thought to have entered and exited the elevator with
 another child;
- The owner of the residence went to use the elevator and was unable to open the
doors;
- The fire department was notified and upon responding and opening the downstairs
 elevator found the girl pinned in the elevator shaft between the elevator and shaft
walls.16

12 ASME A17 Residence elevator committee 2006 meeting minutes
14 The Dallas Morning News, Sunday June 20, 2004, Page 3B;
16 Carolina Beach Police Department, North Carolina, Incident Investigation report July 23, 2006
2009: Nine-year-old boy died, pinned in an elevator shaft between the wall and the door.

Kentucky

- A nine-year-old boy attending his grandmother's wedding ceremony died when he became pinned in a church elevator shaft;
- He wandered off by himself and was riding the elevator in the church sanctuary between the first and second floors;
- He became pinned between the elevator and the wall; there were no witnesses.17

2010: Three-year-old boy suffered catastrophic brain injury, entrapped between hoistway door and accordion door.

Georgia

- The three-year-old boy was entrapped between the hoistway (exterior) door and elevator accordion door;
- After child closed the hoistway door, the door automatically locked by way of an interlock;
- When mother hit the call button from the 3rd floor, the child was trapped in this space; the elevator rose toward the third floor and then stopped and re-leveled;
- The child was crushed by the elevator when it re-leveled down to the second floor;
- The distance between the hoistway door to accordion door varied by nearly 3″;
- 4.875″ to tip of the accordion door / 7.5″ to valley of the accordion door;
- Injuries are catastrophic and permanent. Child diagnosed with an anoxic brain injury due to deprivation of oxygen for an extended period of time; he cannot communicate with the outside world or move in any meaningful way;
- This incident was reported to the CPSC on December 7, 2012.18

18 Jacob Helvey, Elevator incident report date, December 7, 2012; http://www.saferproducts.gov/ViewIncident/1289132
November 2013: Ten-year old boy suffered catastrophic brain injury and quadriplegia, entrapped and pinned under elevator car

South Carolina

- Ten-year-old boy suffered a catastrophic brain injury when he became trapped in an Elmina residential elevator manufactured by Cambridge Elevating, Inc. out of Cambridge, Canada;
- As the elevator began to rise with the car gate open, the child peered over the edge of the car platform and down into the elevator shaft;
- As the car continued to rise, the child's head came into contact with the doorframe, pinning his head under the elevator car;
- The car continued to rise up to the third floor, where the child was found laying face down on the floor of the elevator car with his head and neck trapped under the car platform;
- The jaws of life were eventually required to rescue the child from the elevator;
- In addition to multiple fractures, he suffered catastrophic brain injury.19

I. Introduction

This memorandum characterizes the number of incidents involving entrapments between fully closed car and hoistway doors of residential elevators, as described in the petition. According to the petition, there have been at least 55 child deaths, as well as many injuries, related to residential elevators since 1967. The petitioners provided details on only 16 incidents, which occurred between 1958 and 2013. In 1981, ASME A17.1 changed the requirement for the gap between the car and hoistway doors from 4 inches to a maximum gap of 5 inches. Staff reviewed incident reports that might involve entrapments between fully closed residential elevator car and hoistway doors from January 1, 1981 to November 10, 2016, to identify incidents matching the scenario in the petition. An effort to estimate the national number of injuries resulting from residential elevator entrapments due to gaps between car and hoistway doors is based on National Electronic Injury Surveillance System (NEISS) records retrieved for residential elevator entrapment incidents from January 1, 1981 to December 31, 2015. After review of incidents from January 1, 1981 to November 10, 2016, an attempt to retrieve incidents before 1981 resulted in an incomplete data set, where no residential elevator incidents could be identified.

8 This analysis was prepared by CPSC staff. It has not been reviewed or approved by, and may not necessarily reflect the views of, the Commission.

9 Based on dates of their incident data cited elsewhere in the petition, staff believes the petitioners meant 1947.
A residential elevator, as defined in ASME A17.1-13 §1.3, is “a power passenger elevator that is limited in size, capacity, rise, and speed, and is installed in a private residence or in a multiple dwelling that leads to a private residence, provided the elevators are so installed that they are not accessible to the general public or to other occupants in the building.”

II. Incident Data

a. CPSRMS Incident Data

CPSC staff is aware of a total of eight (8) incidents from reports in CPSRMS, including five fatalities that might have involved residential elevator entrapments between fully closed car and hoistway doors occurring between January 1, 1981 and November 10, 2016. CPSRMS is an online system that maintains consumer-registered incidents and industry comments, which are recorded, verified, and updated. It consists of the Injury or Potential Injury Incident (IPII), In-Depth Investigation (INDP), and Death Certificates (DTHS) databases received and maintained by CPSC. This information is based on anecdotal data collected from reports of incidents received by the CPSC, and thus, the results do not constitute a statistical sample representing all entrapment injuries and fatalities related to residential elevators.

Fatalities

The five (5) individual residential elevator incidents that might involve fatal entrapments between car and hoistway doors between January 1, 1981 and November 10, 2016, included:

1. 8134046440: On 7/6/1981, a 5-year-old, caught and crushed between doors of elevator, suffered multiple skull fractures and fractured vertebrae.

2. 8446003547: On 7/18/1984, a 5-year-old caught between two elevator doors, suffered multiple severe injuries.

3. 8634025958: On 5/24/1986, a 9-year-old caught between elevator doors suffered asphyxia by compression of the chest, resulting in multiple fractures and internal injuries.

4. 8934020725: On 4/20/1989, a 3-year-old suffered traumatic asphyxia from compression of the chest by an elevator door.

5. 9541027660: On 12/25/1995, an elevator door crushed the chest of a 16-year-old, resulting in anoxic encephalopathy, with multiple complications.

10 CPSC staff searched the following databases in CPSRMS: INDP file, IPII file, and the DTHS file. Reported deaths and incidents do not provide a complete count of all that occurred during this time period. However, reported deaths and incidents may provide a minimum number of deaths and incidents occurring during this period and illustrate the circumstances involved in the incidents related to residential elevator door entrapments.
Non-fatalities
Two (2) reported injuries and one (1) reported non-injury were associated with CPSRMS incidents in the period outlined above:

1. I12C0120A: On 12/24/2010, a 3-year-old became entrapped between the hoistway door and accordion door of an elevator on the second floor of a family three-story home, resulting in permanent brain damage.

2. 150928CCC3978: On 12/23/2014, a 5-year-old suffered a fractured hip bone after being trapped between the hoistway door and accordion door of an elevator at a vacation property.

3. 151209CCC1200: On 6/26/2015, catastrophic injury or death was averted when adults rescued a 5-year-old trapped between hoistway door and accordion door before the elevator rose to their floor in a vacation home.

Sample Incidents from the Petition
Appendix A of the petition provided details on sixteen (16) incidents that occurred between 1958 and 2013. However, staff review indicates that nine (9) of these incidents occurred in a nonresidential location, and four (4) incidents did not match the hazard scenario described in the petition. Two of the three remaining incidents were recorded by a CPSRMS incident report (I12C0120A and X9762214A). The incident detailed in I12C0120A describes an entrapment of a 3-year-old boy between the inner and outer doors of a residential elevator that resulted in catastrophic brain injuries. The fatal injury of a 4-year-old girl described in X9762214A may involve an entrapment of the type that is of concern to the petitioner; however, sufficient details to make that determination and to establish the location of the incident are not available. The remaining incident appears to have involved an entrapment between the inner and outer doors of an elevator that resulted in injuries to the leg of a 7-year-old boy; however, it is unknown whether the incident occurred in a residential elevator.

b. CPSRMS Hazard Pattern Analysis
CPSC staff considered all eight incidents based on reports in IPII, INDP, and DTHS to identify hazard patterns associated with residential elevator doors. In three (3) nonfatal reported incidents, entrapments occurred in the space between the fully closed hoistway and accordion-style car doors. In the five (5) fatal reported incidents, there is insufficient detail to determine whether an entrapment between fully closed car and hoistway doors, as described by the petitioners, occurred.

c. NEISS Data
NEISS, a national stratified probability sample of emergency departments in the United States, and its territories, provides the data to generate national estimates of emergency department-treated injuries related to consumer products. There are five strata in the NEISS: children’s hospitals, small hospitals, medium hospitals, large hospitals, and very large hospitals. Within
each stratum is a sample of hospitals that make up the primary sampling units (PSUs) of the NEISS. For each hospital in the sample, every first-time emergency department visit for an injury associated with a consumer product is recorded. To facilitate injury estimates associated with a product or product group, each injury has a product code that identifies the type of product involved. Other product-specific information, such as the product manufacturer or events leading to the hazard, is not recorded in the NEISS. However, information that is recorded for each injury includes sex, age, diagnosis, disposition, and body part. Additional information about the NEISS can be found online at: http://www.cpsc.gov/en/Research--Statistics/NEISS-Injury-Data.

CPSC staff extracted NEISS records related to residential elevators under product codes 1814 “Elevators or other lifts (excluding farm elevators, forklifts and automotive lifts)” and 1889 “Elevators and other lifts (excluding escalators, hoists, jacks, forklifts and automotive lifts),” yielding a large initial data pool. Records describing elevator-related cases do not always clearly indicate an entrapment or a residential setting; therefore, staff reviewed the narratives of each case in this data pool and determined which cases were within the scope of this review – entrapment between the interior and elevator doors of residential elevators.

Although staff discovered 131 cases involving residential elevator door entrapments from January 1, 1981, to December 31, 2015, there was not enough information to determine if they were due to gaps between elevator car doors and elevator hoistway doors, as described in the petition, or due to some other reason. These cases either described incidents involving partial entrapments of various body appendages, but did not sufficiently illustrate a scenario where an entrapment between a fully closed car door and hoistway door could have happened. Consequently, there are an insufficient number of cases to generate a national estimate of emergency department-treated injuries associated with residential elevator door entrapments.

11 NEISS does not record return visits to the emergency department or other follow-up medical visits for the same injury.
12 According to the NEISS publication criteria, an estimate must be 1,200 or greater, the sample size must be 20 or greater, and the coefficient of variation must be 33 percent or smaller.
TAB C: Market Information and Economic Considerations Related to Residential Elevator Petition
Memorandum

Date: February 7, 2017

TO: Vincent Amodeo, Project Manager
 Petition Requesting Rulemaking to for Residential Elevators
 Directorate for Laboratory Sciences

THROUGH: Gregory Rodgers, Ph.D., Associate Executive Director
 Directorate for Economic Analysis
 Robert Franklin, Senior Staff Coordinator
 Directorate for Economic Analysis

FROM: Samantha Li, Economist
 Directorate for Economic Analysis

SUBJECT: Market Information and Economic Considerations Related to Residential Elevator Petition

Background

The Commission received a request to initiate rulemaking for residential elevators, and the Office of the General Counsel docketed the request as a petition (CP15-1). The petition asserts that in many home elevators, and in similar elevators found in older apartment and commercial buildings, the clearance between the fully closed interior door (“car door”) and exterior door (“hoistway door”) is large enough to allow children as old as 12 years to fit between the doors.13 According to the petition, a child can become entrapped in this enclosed space when the elevator is called to another floor, and the hoistway door automatically locks. The child’s body is carried along with the elevator car until it meets the obstruction of the sill, where the child’s body—usually the head—is crushed.

Beginning on January 1, 1981 until December 2016, the voluntary standard (ASME A17) allowed a 5-inch gap between the car door and hoistway door. The petitioners assert that, in the case of an elevator car with an accordion door, this standard may have allowed up to 8 inches of space between the doors, if the distance is measured between the hoistway door and the furthest point on the car door (i.e., the valley of the accordion door). The petitioners want the space

13 The interior door is the car door or gate on the elevator car. In many residential elevators the car door is an accordion door. The exterior or hoistway door is the door through which the elevator is accessed. In many residential elevators this is a swing door.
between the hoistway and car door to be limited to no more than 4 inches when measured from
the inside of the hoistway door to the farthest point on the car door (i.e., the distance between the
inside face of the hoistway door and the valley for an accordion door should not exceed 4
inches). The petitioners state that a mandatory standard is necessary to adequately reduce the
entrapment hazard between the space of the car door and hoistway door.

In December 2016, the industry published a revised voluntary standard (ASME A17.1-2016) that
includes provisions to limit the space between the hoistway door and car door. Staff believes
these provisions address the petitioners’ concern.

This memorandum provides information on the market for residential elevators and economic
considerations. The discussion is based on information that was readily available, including
information provided by the petitioners and public comments.

The Product

A residential elevator is comprised of hoisting and lowering mechanisms, a car, and a door that
allows entry to and exit from the car at each level. The suspension and support cables are
attached to the car frame. Residential elevators use one of four lift systems: hydraulic lift,
winding drum, traction drive, and pneumatic. Hydraulic lifts operate by pump and cylinders.
Winding drum and traction drive systems operate via pulleys, gears, and counterweights.
Pneumatic lifts operate via air pressure, where the air pressure allows the elevator car to travel
between floors.

The hoistway door is intended to keep occupants from falling into the elevator shaft when the car
(or cab) is not present, and typically is not part of the elevator itself. The hoistway door
automatically closes and locks when the elevator car is called to another floor. The hoistway
doors, which are usually a swing door in the case of residential elevators, can be designed to match
the other doors in the home. Some residential elevators do not require a shaft or machine room.

The car door allows entry and exit to the car and acts as a barrier to prevent occupants from
falling out of the car while the elevator is in motion. The elevator car moves in a vertical manner,
e.g., the elevator car covers the distance between landings. A car door can consist of either one
or multiple panels. A single panel door moves horizontally, traversing the width of the doorway
from left or right upon opening or closing. Two panel doors fold and move horizontally in the
same manner as a single panel door or may open from each other at the center of the door frame.
An elevator car can have up to three door openings. Car doors can be operated by manual or
automatic gate openers.

Some elevator models use collapsible car doors, such as accordion-style gates. Gates may be
composed of metal. The accordion gate collapses and folds to one side when the consumer
pushes the gate to enter and exit the car.

Single-family home elevators are designed to travel shorter distances than elevators used in
multi-story buildings. Residential elevators in single-family homes are generally designed to
travel up to 50 feet and service two or more landings (stops). Residential elevators range in size. The smallest can hold only one person comfortably, while the largest residential elevators are 15 square feet and can hold several people at once. On average, residential elevators can carry between 500 and 950 pounds. However, the smallest might have a maximum capacity as low as 375 pounds, and the largest might have a maximum capacity of up to 1,000 pounds. Elevators can be designed so that the interior of the car and passengers are visible when the car is traveling.

Market for Residential Elevators

Manufacturers

In the North American Industry Classification System (NAICS) residential elevator manufacturers are classified in category 333921 (Elevator and Moving Stairway Manufacturing). Based on 2012 Census data, there were approximately 170 firms in this category. However, this category also includes manufacturers of commercial and industrial elevators and escalators, and most of the manufacturers in this category do not manufacture residential elevators. EC staff identified at least seven firms that supply residential elevators in the United States. Three are domestic manufacturers and four are foreign manufacturers who have dealers or distributors in the United States. All three domestic manufacturers have fewer than 500 employees and would be classified as a small business under the criteria established by the U.S. Small Business Administration (SBA).

Number in Use and Sales

In 2013, there were approximately 125,000 residential elevators in use. Additionally, approximately 5,000 are sold annually. A major factor in a household’s decision to add an elevator to a residence is the desire to stay in their homes as they age. In 2013, the typical cost of a residential elevator ranged from $15,000 to $30,000. Retrofitting elevators into existing homes is more expensive than installing the home at the time of manufacture. Once installed, an elevator’s useful life can be expected to be the same as that of the house.

Residential elevators are sold through dealers or retailer networks that are often affiliated with a manufacturer. The dealer usually arranges for the installation of the elevator. Elevator dealers or installers may be classified in the NAICS category 238290 (Other Building Equipment

14 Hoistway doors are considered part of the residential unit. Manufacturers of hoistway doors are excluded from this analysis.
Contractors). Based on 2012 Census data, there were approximately 5,800 firms in this category. More than 95 percent of these firms would be classified as a small business under the criteria established by SBA.\footnote{Under SBA guidelines, a manufacturer is considered small if it employs 500 or fewer employees.} However, this is a very broad category and includes firms involved in installing gasoline pumps, satellite dishes, commercial doors, boilers and pipes, in addition to elevator installation. It is probable that most firms in this NAICS category are not involved in installing residential elevators.

Installation of Elevators in Homes

Hoistway doors generally are not manufactured or installed by the elevator manufacturer. Elevator dealers or installers work with home remodeling contractors (if the elevator is being retrofitted into an existing home) and home builders (if the elevator is being installed in new construction) to design and build the hoistway or shaft in which the elevator will be installed. The contractor involved in building or modifying the house to accommodate the elevator hoistway or shaft would be responsible for building or installing the hoistway door and sill. Typically, the residential elevator hoistway door matches the other internal doors in the house.

According to an elevator dealer sales representative, the hoistway door on most residential elevators (possibly around 90 percent) is a swing-door. Staff does not have any information on the number of swing-door elevators in use in which the gap between the elevator car door and the hoistway door is greater than 5 inches.

The National Association of Elevator Contractors (NAEC) and National Association of Elevator Safety Authorities (NAESA) both provide education, training, and certification programs for residential elevator installation and inspection.\footnote{See \url{http://naec.org/about-naec/} and \url{https://www.naesai.org/qei-certification} for more information on elevator certification programs, e.g., certification for elevator technicians, residential elevator lift technicians, and Qualified Elevator Inspectors.} NAEC represents independent elevator contractors and suppliers of products and services. NAESA members are comprised of elevator inspectors, mechanics, consultants, contractors, architects, engineers, elevator manufacturers and others interested in elevator safety, code enforcement, and technology. NAEC refers to A17.1 as a reference document to determine compliance for residential elevators. Thus, elevator inspectors are aware of the requirements in the voluntary standard.\footnote{See \url{https://www.naesai.org/qei-certification} for additional information about QEI certification.} According to an elevator dealer sales representative, elevator installers are often aware of building codes and other requirements, including the minimum space between the hoistway door and elevator car door or gate; and if a problem is noticed, elevator inspectors will frequently leave an elevator inoperable until the problem is fixed.\footnote{Based on January 14, 2016 phone conversation with Area Access sales representative.}
Existing Safety Standards for Residential Elevators

Voluntary Standard

Residential elevators are covered under the voluntary standard, ASME A17.1, Safety Code for Elevators and Escalators. The revised standard, ASME A17.1-2016/CSA B44-16, was published in December 2016. The standard requires the distance between the face of the hoistway door and the hoistway edge of the landing sill not to exceed 0.75 inches for swinging doors. In addition, the distance between the face of the hoistway door and car door shall not exceed 4 inches. The previous version of the standard allowed the distance between the face of the hoistway door and the hoistway edge of the landing sill to be up to 3 inches and the distance between the face of the hoistway door and car door to be up to 5 inches. In the industry, these distances are referred to as “3 x 5” rule.

Building Codes

Almost all state building codes reference ASME A17.1, though most do not reference the latest revision. Some state building codes require the distance between the elevator car door and the hoistway door to be less than the 4 inches required in the 2016 revision of the voluntary standard. For example, the Georgia residential building code, effective 2015, amended the requirements of ASME A17.1 by stating: “The clearance between the hoistway doors or gates and the hoistway edge of the landing sill shall not exceed 3/4 inch (19 mm). The distance between the face of the landing door or gate and the car door or gate shall not exceed 3 inches (75 mm).”

Industry Efforts to Address Residential Elevator Safety

Several trade associations and other firms involved in the manufacture and installation of residential elevators participate in The HomeSafe Campaign (HomeSafe), which provides homeowners, manufacturers, and installers with information on how to install, operate, and maintain their home elevators safely. The participants in this campaign include Association of Members of the Accessibility Equipment Industry (AEMA), National Association of Elevator Contractors (NAEC), National Association of Elevator Safety Authorities International (NAESA), and ThyssenKrupp Access Corp.

HomeSafe suggests purchasing elevators with certain features if there are children in the household. HomeSafe recommends space guards or special hoistway doors that reduce the space between the elevator door and the hoistway door. Retail price for one space guard is approximately $90. OTIS Elevator Company provided a similar retrofit product as part of a

23 Georgia State Amendments to the International Residential Code for One- and Two Family Dwellings. Revised January 2015. Available at:

24 The retrofit product is designed for use with ThyssenKrupp Access, National Wheel-O-Vator, or Access Industries home elevators. The retailer suggests contacting the elevator manufacturer if the consumer wants to use the product with an elevator model not listed above.
http://elevatorspaceguard.com/
In addition to safety guards, OTIS also provided brochures and information highlighting the dangers specific to residential swing-doors.

HomeSafe recommends that residential elevators include:

- Hoistway doors with interlocks, which prevent the hoistway door from being opened unless the car is at that landing and prevent the car from leaving the landing unless the door is closed and locked.
- Car door or gate safety switch to prevent the car from moving unless the car door or gate is in the closed position and to stop the car if the car door or gate is opened during travel.
- Cab safety devices to stop the cab in the unlikely event the cab suspension means fail.
- Emergency stop switch in the cab to stop the cab if necessary during travel.
- Emergency signaling devices in the cab (alarm and phone) to signal if help is needed.
- Terminal and final limit switches to prevent the car from over-travelling past the upper- and lower-most stops.
- Certified electrical control system to monitor all safety functions and ensure these functions are operating properly before allowing the elevator cab to move.
- Additional safety features may be provided depending on the type of elevator and drive system used. These include, the following:
 - Over speed governor to monitor car speed and stop the car if it moves too rapidly.
 - Buffers to protect the passengers, cab, and others in the unlikely event of a fall.
 - Flow control valve in the event of a hydraulic oil line failure.
- Light curtains that detect someone in the space between doors, and key locks and door locks to prevent children from potentially getting stuck or injured in a home elevator.

The HomeSafe Campaign recommends that only professional and licensed persons install and inspect home elevators and perform all required maintenance, service, or repair work. Mechanics and installers should be trained and licensed or recognized by an authority having jurisdiction in the local area.

Some firms offer additional safety features to prevent child entrapment. For example, one firm provides an alternative to accordion doors: the firm’s “child safe” doors consist of several rigid panels that traverse the width of the door opening. Another firm provides a “child safe gate” that allows the elevator to operate only after the gate is secured and can reduce the distance between the hoistway door and car door to “as little as ¾ inch.”

27 Home Safe Campaign information can be found online at: http://homesafecampaign.com/know-the-safety-features-of-your-home-elevator/.

28 See http://homesafecampaign.com/faqs/ for additional information about the safety campaign.
Societal Costs

The Directorate for Epidemiology identified fatalities that might have involved entrapment between an elevator car door and the hoistway door. However, there were insufficient details to determine whether entrapment between a fully closed car door and hoistway door was, in fact, the cause of deaths. Similarly, the Directorate for Epidemiology was unable to estimate the number of nonfatal injuries that would be addressed by the petition because there was not enough information available in the NEISS records to determine if these cases were due to gaps between elevator car doors and elevator hoistway doors, as described in the petition. Because there is insufficient information to determine the number of deaths or to estimate the number of injuries associated with this hazard, staff cannot estimate the societal costs associated with this hazard.

Summary

The petition seeks a rule to limit the distance between the inside of the hoistway door and the valley for an accordion door to no more than 4 inches measured from any point. The estimated number of home elevators in use is approximately 125,000, and approximately 5,000 are sold annually. About 90 percent of residential elevators could have accordion car doors and swing hoistway doors. A new version of the voluntary standard, ASME 17.1, was published in December 2016, and limits the space between the car door and hoistway door to no more than 4 inches. The voluntary standard applies to elevators manufactured and installed after June 2017.
References

TAB D: Human Factors Assessment for the Residential Elevator Petition
MEMORANDUM

DATE: January 12, 2017

TO: Vincent J. Amodeo, Project Manager, Residential Elevator Petition Division of Mechanical Engineering, Directorate for Laboratory Sciences

THROUGH: Joel R. Recht, Ph.D., Associate Executive Director, Directorate for Engineering Sciences

Rana Balci-Sinha, Ph.D., Director, Division of Human Factors, Directorate for Engineering Sciences

FROM: Timothy P. Smith, Senior Human Factors Engineer, Division of Human Factors, Directorate for Engineering Sciences

SUBJECT: Human Factors Assessment for the Residential Elevator Petition

BACKGROUND

On November 1, 2013, The Safety Institute, Carol Pollack-Nelson, and Cash, Krugler & Fredericks, LLC (collectively referred to as the petitioners), submitted a petition (CP 15-1) to the U.S. Consumer Product Safety Commission (CPSC or Commission) to initiate rulemaking to mandate a safety standard for residential elevators to address an entrapment hazard caused by the space between the interior elevator car door or gate (car door) and the exterior elevator access door or landing door (hoistway door) for the residence or building. The petitioners assert that in many home elevators, and in similar versions found in older apartment and commercial buildings, the clearance between the car door and hoistway door is large enough to allow children as old as 12 years to fit between the doors. According to the petitioners, a child can become entrapped in this space when the elevator is called to another floor, and the hoistway door automatically locks. In this scenario, the child’s body is carried along with the elevator car until the hoistway door meets the obstruction of the sill, where the child’s head or body is crushed.

The petitioners request that CPSC promulgate a mandatory standard that constrains the space between residential elevator hoistway doors and car doors to 4 inches, when measured from the inside of the hoistway door to the farthest point on the car door. Since the petition was docketed, ASME A17.1, Safety Code for Elevators and Escalators, was revised to reduce the permissible clearance between the hoistway and car doors from 5 inches to either 4 inches, or a distance that would reject a 4-inch diameter ball, depending on the specific door combination in use. This memorandum, prepared by staff of CPSC’s Directorate for Engineering Sciences, Division of Human Factors (ESHF), discusses the extent to which a maximum space of 4 inches, as requested by the petitioner and as reflected by the latest revisions to ASME A17.1, would address the purported hazard, based on available incident and child anthropometric data.
DISCUSSION

INCIDENT DATA

Staff of CPSC’s Directorate for Epidemiology, Division of Hazard Analysis (EPHA), has identified eight reported incidents involving entrapments between residential elevator doors occurring between January 1, 1981 and November 10, 2016 (see Tab B). Five of the eight incidents were fatalities, and two resulted in injury; the remaining incident did not result in injury. The reported fatalities and injuries involved children as young as 3 years. Although most of the reported incidents did not include enough information to determine the source of the entrapment, three reported incidents—all non-fatalities—involves gaps between accordion-style car doors and hoistway doors, and appear to reflect the hazard pattern identified in the petition.

EPHA staff also searched the National Electronic Injury Surveillance System (NEISS) and identified 131 cases involving entrapments between residential elevator doors from January 1, 1981 and December 31, 2015. ESHF staff’s examination of the cases found that they involved children as young as 11 months. Although the narratives associated with these cases are very brief, most appear to involve hand and finger entrapments in elevator doors, rather than the specific hazard scenario identified by the petitioners. Nevertheless, the cases do provide some insight into the lower age range of children who might be exposed to the hazard of interest to the petitioner.

ASME A17.1 REQUIREMENTS AND REVISIONS

The 2013 version of ASME A17.1, Safety Code for Elevators and Escalators, includes a requirement for the distance between the hoistway door and the car door not to exceed 5 inches. Specifically, section 5.3.1.7.2 of ASME A17.1 – 2013 states, in part, “The distance between the hoistway face of the landing door or gate and the car door gate shall not exceed 125 mm (5 in.).” As detailed by staff of CPSC’s Directorate for Engineering Sciences, Division of Mechanical and Combustion Engineering (ESMC), the 2016 version of the standard includes revisions that limit this distance to: (1) not exceed 4 inches, or (2) reject a 4-inch diameter ball (see Tab E). Whether this requirement is met by a 4-inch or smaller measurement or by the rejection of a 4-inch diameter ball depends on the specific types of hoistway and car doors in use.29 However, the overall effect is the same: a rigid object larger than 4 inches in all dimensions would no longer fit in the space between the hoistway and car doors.

EFFECTIVENESS OF 4-INCH REQUIREMENT

Young children are known to have heads that are larger proportionally than their adult counterparts, relative to overall body size, and head size is often the determinant of whether a

29 For example, “power-operated horizontally sliding hoistway and car doors” and “swinging hoistway doors and power-operated horizontally sliding car doors” are assessed by taking a measurement; however, “swinging hoistway doors and folding car doors,” “swinging hoistway doors and car gates,” and “swinging or horizontally sliding hoistway doors and manually operated horizontally sliding car doors” are assessed with a 4-inch diameter ball (see ASME A17.1 – 2016, section 5.3.1.8.3).
young child’s body can pass entirely through an opening. Consequently, young children are particularly susceptible to feet-first entrapment within bounded openings. In a feet-first entrapment scenario, the child enters a fully bounded opening that is large enough to admit the torso, but is not large enough for the head to pass through. Similarly, for small, at-risk children, head size would likely be the limiting factor or dimension that would determine whether the child could fit within the available space between the closed hoistway and car doors of a residential elevator. Because head widths generally are narrower than head lengths, the worst-case scenario would involve a child standing within this space with the head turned sideways. If the width of a child’s head is larger than the available space, then the doors cannot close completely, which would prevent the hazard scenario.

Few anthropometric data sources include detailed head measurements for children; however, Snyder and colleagues (1977) include data on maximum head breadth, which is the maximum width of the head (i.e., the horizontal distance from one side of the head to the other) above and behind the ears. Four inches is smaller than the maximum head breadths of virtually all children examined in that study. For example, the minimum and 5th percentile values for children ages 2.0 to 3.5 years—the age range encompassing the youngest known victims of the hazard scenario identified by the petitioners—are 11.9 cm (4.7 inches) and 12.5 cm (4.9 inches), respectively. These data are generally consistent with other limited head breadth data available for children in this approximate age range.\(^{30}\)

Even if one were to consider younger potential victims, available anthropometric data suggest that limiting the space between the elevator car and hoistway door to 4 inches effectively addresses the hazard. Based on data reported by Snyder and colleagues (1977), only the smallest of the youngest infants are likely to have head breadths smaller than 4 inches. For example, the minimum and 5th percentile values for infants age 0.0 to 2.0 months are 9.5 cm (3.7 inches) and 9.6 cm (3.8 inches), respectively; however, the average head breadth for this age group exceeds 4 inches (10.4 cm, or 4.1 inches), and even the minimum reported value for infants age 3.0 to 5.0 months is larger than 4 inches (10.4 cm, or 4.1 inches). Again, these data are generally consistent with other head breadth data available for children in the same approximate age ranges.\(^{31}\)

The ASME voluntary standard’s use of a 4-inch diameter ball, rather than a 4-inch measurement, is especially useful for elevators with accordion-style car doors because this approach avoids possible confusion about whether the measurement should be taken at the folds of the car door that are closest to or furthest from the hoistway door. In addition, this approach allows one to

\(^{30}\) For example, Schneider and colleagues (1986) report the smallest (minimum) maximum head breadth for children 25 to 36 months old to be 12.3 cm (4.8 inches). Steenbekkers (1993 as cited in Norris & Wilson, 1995) report the 5th percentile head breadth for 2-year-old males and females in The Netherlands to be 12.5 cm (4.9 inches) and 12.0 cm (4.7 inches), respectively.

\(^{31}\) Schneider and colleagues (1986) report the smallest (minimum) maximum head breadth for children 0 to 3 months old to be 10.0 cm (3.9 inches); for children 4 to 6 months old, this value is reported to be 10.5 cm (4.1 inches). Steenbekkers (1993 as cited in Norris & Wilson, 1995) report the 5th percentile head breadth for 0- to 2-month-old males and females in The Netherlands to be 8.9 cm (3.5 inches) and 9.3 cm (3.7 inches), respectively; the 5th percentile head breadth for 3- to 5-month-old males and females were reported to be 9.9 cm and 10.0 cm (about 3.9 inches), respectively, and the 5th percentile head breadth for 6- to 8-month-old males and females were reported to be 11.0 cm and 10.9 cm (about 4.3 inches), respectively.
assess whether something 4 inches in diameter could fit into the V-like spaces that accordion-style car doors can create, regardless of the measured horizontal distance between the car door track and the hoistway door.

CONCLUSION

Based on the available incident and anthropometric data, ESHF staff concludes that requiring a maximum space of 4 inches between the elevator car and hoistway door effectively addresses the hazard identified in the petition. The only children who would likely fit completely within this space would be the smallest of the youngest infants (e.g., small newborns). These children are not known to be, and are highly unlikely to be, involved in the hazard scenario identified in the petition.

REFERENCES

TAB E: Assessment of Existing Standards and Practices Related to Residential Elevators
TO : Residential Elevator Petition File
 Directorate for Engineering Sciences

THROUGH : Mark Kumagai
 Director, Division of Mechanical and Combustion Engineering
 Directorate for Engineering Sciences

FROM : Vincent J. Amodeo
 Mechanical Engineer
 Directorate for Engineering Sciences

SUBJECT : Assessment of Existing Standards and Practices Related to Residential Elevators

I. Introduction and Background

On November 1, 2013, the Safety Institute, Carol Pollack-Nelson, and Cash, Krugler & Fredericks (the petitioners) petitioned the Consumer Product Safety Commission (CPSC, or Commission) to initiate mandatory rulemaking to set safety standards for the design and installation of residential elevators to eliminate excessive space between the elevator car door/gate (car door) and the hoistway or swing door (hoistway door) (TAB A). The petitioners request that the rule constrain the space between the car door and hoistway door to no more than 4 inches when measured from the inside of the hoistway door to the farthest point on the car door. On January 22, 2015, the Office of the General Counsel docketed the request for rulemaking as Petition CP 15-1 (80 FR 3226) under the Consumer Product Safety Act (CPSA).

The petitioners state that the space between the elevator car and hoistway doors in many residential home elevators, and similar elevators found in apartment and commercial buildings, is large enough to allow children up to 12 years of age to fully fit between the closed doors. If the child becomes trapped in the space when the elevator is called to another floor, the child is dragged inside the hoistway until the child’s body is crushed against the next floor’s sill.

The petitioners state that there have been at least 55 child deaths related to residential elevators since 1967 (based on dates of their incident data cited elsewhere in the petition; staff believes the petitioners meant 1947), as well as many injuries, and provided details on 16 incidents that occurred between 1958 and 2013, in which a child was purported to have been injured or killed while entrapped in the subject space in a residential elevator. However, a review by CPSC staff (TAB B) indicates that many of the 16 incidents did not involve residential elevators or were not related to the entrapment hazard identified by the petitioner, and the cause could not be determined in some incidents.

The petitioners state that the elevator industry has not modified the relevant requirement for
residential elevators, Section 5.3, in the voluntary standard, American Society of Mechanical Engineers (ASME) A17.1 *Safety Code for Elevators and Escalators* to address the hazard. At the time the petition was filed, Section 5.3.1.7.2 in ASME A17.1 allowed a gap of up to 5 inches between the residential elevator car door and hoistway door. The petitioners cited numerous ASME A17 subcommittee efforts since 2005 to reduce the clearance between the elevator car and hoistway doors in the voluntary standard from 5 inches to 4 inches, but each effort failed to pass. In addition, the petitioners believed compliance with an amended ASME A17.1 would be low because jurisdictions are not required to adopt the latest version of the A17.1 Elevator Safety Code. Therefore, the petitioners believe mandatory rulemaking is required to address the child entrapment hazard in residential elevators.

This memorandum provides an assessment of the existing standard related to residential elevators, ASME A17.1 *Safety Code for Elevators and Escalators*.

II. Product Description

ASME A17.1 defines “residential elevators” as elevators that are installed in or at private residences or in buildings providing access to a private residence provided the elevators are not accessible to the general public. Figure 1 shows a typical residential elevator installation.

![Figure 1. Typical Residential Elevator](image)
The hoistway (or shaft) in which the elevator moves is usually solidly enclosed throughout its height, except for hoistway doors at each landing access. Hoistway doors can be swinging or horizontally sliding doors or gates. Interlocks are installed to prevent the elevator car from moving unless all doors are closed and locked. Hoistway and car doors may be power-operated or manual. A typical residential elevator with a swinging exterior door and an accordion-style interior door is shown in Figure 2. The hazard scenario can occur when a child becomes entrapped between the fully closed interior car door and the closed exterior hoistway door as shown in Figure 3. If a child is entrapped and the elevator is called to a different landing, the child becomes wedged between the moving elevator car and the stationary hoistway door and frame.

![Elevator Hoistway Door](image)

![Elevator Car Door](image)

Figure 2. Typical Residential Elevator with Swinging Hoistway Door and Accordion Car Door
III. Voluntary Standard

History

The applicable voluntary standard for residential elevators is ASME A17.1, *Safety Code for Elevators and Escalators*, which specifies requirements for elevators, escalators, dumbwaiters, moving walks, material lifts, and dumbwaiters with automatic transfer devices. The standard was first published in 1921, and first included requirements for residential elevators in 1955. At the time the petition was submitted on November 1, 2013, the standard specified a maximum sill depth of 3 inches and a distance of 5 inches between the hoistway faces of the residential elevator car and hoistway doors.

Requirements for residential elevators are covered in ASME A17.1 section 5.3, *Private Residence Elevators*. Section 5.3 applies to “elevators installed in or at a private residence … (and) similar elevators installed in buildings as a means of access to private residences within such buildings provided the elevators are so installed that they are not accessible to the general public or to other occupants in the building.”

Section 5.3.1.7.2 of the 2013 version allowed a gap of up to 5 inches between the hoistway face of the car and hoistway doors. An overhead view of a typical door interface is shown in Figure 3. The blue figure shows the relevant gap in which child could become entrapped between closed doors.

5.3.1.7.2 Clearance Between Hoistway Doors or Gates and landing Sills and Car Doors and Gates. The clearance between the hoistway doors or gates and the hoistway edge of the landing sill shall not exceed 75 mm (3 in.). The distance between the hoistway face of the landing door or gate and the car door (or) gate shall not exceed 125 mm (5 in.).

Staff assessed that the 2013 version requirements and found three concerns relative to the entrapment hazard presented by the petition:

1. A 5-inch dimension exceeds the head breadths of small at-risk children (see Tab D).
2. There is no requirement for how the dimension is measured. The prevalent use of accordion-style car doors could allow for gaps greater than 5 inches when measured between the “Vs” of the interior door and the exterior door. Such large spaces increase the risk that children can fit and become trapped. The petitioners claim that such spaces could trap children up to 12 years of age.
3. There is no requirement for the rigidity of the car and hoistway doors. Thus, if either door can deform with minimal force, it can create a gap greater than 5 inches and permit older children to become trapped.
The ASME A17 standards committee attempted to address residential elevator entrapment hazards on several occasions. In 2005, the ASME A17 elevator committee discussed revisions to the clearance section of A17.1, and several members recommended a clearance of 4 inches between the car and hoistway doors. However, proposals to reduce the allowable clearance and to detail how the measurement was to be made were rejected. The 5-inch clearance between the car and hoistway doors remained in the 2013 edition of the standard.

Current Standard

In June 2013, ASME balloted several proposed revisions to A17.1-2013, which included a draft ballot for the residential elevators section 5.3 shown in Appendix A. The standards committee ballot was in January 2015. The changes were approved as balloted, and the revisions were included in the 21st edition of ASME A17.1, published on November 30, 2016.

ASME A17.1-2016 added section 5.3.1.8.3, which specifies the clearance between hoistway doors (exterior doors) and car doors or gates (interior doors). The new section breaks out the clearance requirements for five different car and hoistway door combinations:

a. *Power-operated horizontally sliding hoistway and car doors*. For this combination, the measurement of the leading edge of the doors shall not exceed 100 mm (4 in.).

b. *Swinging hoistway doors and folding car doors*. For this combination, when both doors are in the fully closed position, the space between the doors shall reject a 100 mm (4 in.) diameter ball at all points.

c. *Swinging hoistway doors and car gates*. For this combination, the space between the doors shall reject a 100 mm (4 in.) diameter ball at all points.

d. *Swinging hoistway doors and power-operated horizontally sliding car doors*. For this combination, where the car door(s) cannot be closed until after the hoistway door is closed, and the car door(s) automatically open when the car is at a landing and the hoistway door is opened, the measurement between the hoistway face of the hoistway...
door and the hoistway face of the car door shall not exceed 100 mm (4 in.). Where either door can be disconnected from the operator (control) and then allow the user to operate the door manually, 5.3.1.8.3(e) shall apply.

e. *Swinging or horizontally sliding hoistway doors and manually operated horizontally sliding car doors.* For this combination, when both doors are in the fully closed position, the space between the doors shall reject a 100 mm (4 in.) diameter ball at all points.

ASME A17.1-2016 also added section 5.3.1.8.2 (d), which specifies the strength and deflection of doors, gates, and their guides, guide shoes, track, hangers. This section addresses the hazard of an entrapment space created between the hoistway door and elevator car door due to one or both doors deflecting and creating a hazardous gap.

1) Horizontal sliding car doors and gates when fully closed shall be designed and installed to withstand a force of 335 N (75 lbf) applied at any location on the door without exceeding a deflection of 19 mm (0.75 in.) and without permanent deformation.

2) Folding car doors when fully closed shall be designed and installed to withstand a force of 355 N (75 lbf) applied using a 100 mm (4 in.) diameter sphere at any location within the folds on the door without exceeding a deflection of 19 mm (0.75 in.) and without permanent deformation.

Additionally, ASME A17.1-2016 includes a revised section 5.3.1.7.2 to reduce the clearance distance between the hoistway face of the hoistway doors or gates and the hoistway edge of the landing sill. The revision specifies that this clearance shall not exceed 19 mm (0.75 in) for swinging doors and 57 mm (2.25 in.) for sliding doors.

ASME also has a standard for existing elevators, ASME A17.3-2015, *Safety Code for Existing Elevators and Escalators*, which is currently in the ballot process to require the same residential elevator door clearances and rigidity test method as required under ASME A17.1-2013. These changes would ensure that potential entrapment hazards on existing elevators will also be addressed. CPSC staff will continue to monitor ASME A17.3-2015 standard activities.

IV. Discussion

Staff reviewed the petitioners’ recommendation that a mandatory rule for residential elevators be established to constrain the space between the car and hoistway doors to no more than 4 inches when measured from the inside of the hoistway door to the farthest point on the car door. Staff examined the potential hazard for entrapment and assessed the current voluntary standard to see if such a hazard would be addressed. Staff also reviewed whether: (i) compliance with an existing voluntary standard would eliminate or adequately reduce the risk of injury addressed and; (ii) whether it is likely that there will be substantial compliance with such voluntary standard.
The petitioners’ request states that injuries and deaths occurred in the excess space between fully closed hoistway and car doors of residential elevators, due, in part, to the ASME standard in place at the time (ASME A17.1-2013), which allowed a gap of up to 5 inches between the hoistway face of the car and hoistway doors.

Staff believes that the revisions in ASME A17.1-2016 would adequately address the entrapment hazard for new residential elevator installations by: (1) specifying a clearance of no more than 4 inches between the elevator and car doors, (2) specifying a test method to determine the clearance is not exceeded, and (3) specifying the rigidity of the elevator doors. According to CPSC human factors staff (TAB D), limiting the dimension between the car and hoistway door to no more than 4 inches will prevent all but the smallest newborns from fitting completely within the space. This group is highly unlikely to be involved in the hazard scenario.

The 4-inch requirement addresses the hazardous 5-inch dimension between the hoistway and car door and exceeds the head breadths of small at-risk children by removing the potential for accordion-style car doors to create gaps greater than 4 inches when measured between the “Vs” of the interior door and the exterior door. The requirement specifying the rigidity of the car and hoistway doors ensures that the doors cannot become deformed with minimal force and create a gap greater than 4 inches. Staff believes the revisions in ASME A17.1-2016 would address the potential the hazard, because the only children who would likely fit completely within the 4-inch space would be the smallest of the youngest infants (e.g., small newborns). No infants have been involved in the hazard scenario identified in the petition.

Staff believes most elevators installed after ASME A17.1-2016 becomes effective in May 2017 will meet the new requirements if state building codes are updated to require safety inspections that meet the ASME A17.1-2016 requirements by fall 2017. Staff reviewed the elevator building codes of all 50 states. Almost all the states reference ASME A17.1 in the state elevator building code requirements. However, many states need to update their references to the latest version of the standard on their website. The ASME A17 Committee has established the A17 Regulatory Authority Council, which facilitates the dissemination of the latest code changes to jurisdictional authorities. Staff will contact ASME to alert the state regulatory bodies that the newest version (2016) is available and should be reflected if the latest version is not indicated in the existing state code.

Staff believes that industry will be informed of the new standard requirements because the committee that developed the revised standard is comprised of elevator manufacturers and elevator installers. In addition, associations, such as NAEC, AEMA, and NAESA, promote the latest safety information to elevator manufacturers and installers through the HomeSafe Campaign (HomeSafe), which provides homeowners, manufacturers, and installers with information on how to install, operate, and maintain their home elevators safely. Membership in these organizations is comprised of elevator inspectors, mechanics, consultants, contractors, architects, engineers, elevator manufacturers and others interested in elevator safety, code enforcement, and technology. NAESA members include 328 contractors, 58 associate contractors, and 293 suppliers. Quality of Elevator Inspectors (QEI) certification is obtained
through NAESA and ASME A17.1 is listed as a required codebook for the exam, and the 2016 revision will become mandatory code for certification in fall 2017.

ASME also has a standard for existing elevators, ASME A17.3-2015, *Safety Code for Existing Elevators and Escalators*, which is currently in the ballot process to require the same residential elevator door clearances and rigidity test method as required under ASME A17.1-2013. These changes would ensure that potential entrapment hazards on existing elevators will also be addressed. CPSC staff will continue to monitor ASME A17.3-2105 standard activities.

V. Conclusion

Staff believes that the current edition of ASME A17.1-2016 addresses the petitioners’ concern for new elevator installations: (1) specifying a clearance of no more than 4 inches between the elevator car and hoistway doors, (2) specifying a test method to determine the clearance is not exceeded, and (3) specifying the rigidity of the elevator doors. In addition, staff also finds that compliance with the voluntary standard would eliminate or adequately reduce the risk of injury addressed. Staff also believes that by working with the ASME A17.1 Committee to alert state regulatory bodies to update references to the current standard, substantial compliance to the voluntary standard will be more likely.
5.3.1.7 Protection of Hoistway Openings

5.3.1.7.1 Where Required Hoistway Enclosure Provided. Where a hoistway enclosure is required provided, landing openings shall be protected by swinging or horizontally sliding doors or gates. Landing openings in solid hoistway enclosures shall be protected the full height by solid swinging or horizontally sliding doors. Their fire-protection rating shall be not less than required by the building code (see 1.3). The doors or gates shall be designed to withstand a force of 670 N (150 lbf) applied horizontally over an area 100 mm x 100 mm (4 in x 4 in.) in the center of the doors or gates without permanent displacement or deformation.

Rationale: Updated proposal to include hoistway doors whenever an enclosure is provided, not just when they are required. Removed hoistway gates to be consistent with other sections of the Standard.

5.3.1.7.2 Clearance Between Hoistway Doors or Gates and Landing Sills and Car Doors or Gates. The clearance distance between the hoistway face of the hoistway doors or gates and the hoistway edge of the landing sill shall not exceed 75 mm (3 in.) for swinging doors and 57 mm (2.25 in.) for sliding doors. The distance between the hoistway face of the landing door or gate and the car door or gate shall not exceed 125 mm (5 in.)

Rationale: Reduced clearance between hoistway door and edge of landing sill based on Hazard Analysis. Moved hoistway door to car door clearance to new section 5.3.1.8.3.

5.3.1.8.2 Car Doors and Gates. A car door or gate that, when closed, will guard the opening to a height of at least 1675 mm (66 in.) shall be provided at each entrance to the car. Car doors shall be permitted to be of solid or openwork construction that will reject a ball 75 mm (3 in.) in diameter. Collapsible car gates shall be of a design that, when fully closed (extended position), will reject a ball 75 mm (3 in.) in diameter.

a) Power Operation of Car Doors and Gates. Power opening shall be permitted for car doors and gates, and shall conform to 2.13.2.1 and 2.13.6. Power closing shall be permitted for car doors and gates, and shall conform to 2.13.3 through 2.13.6.

b) Car Door or Gate Locking Devices. Where the hoistway enclosure is not continuous for the full travel of the car, the car door or gate shall be provided with a mechanical lock that will lock the car door or gate if the car is more than 150 mm (6 in.) vertically away from a landing.

c) Car Door or Elevator Contacts. Every car door or gate shall be provided with an electric contact conforming to 2.14.4.2.3 and 2.14.4.2.5. The design of the car door or gate electric contacts shall be such that for a sliding door or gate, the car cannot move unless the door or gate is within 50 mm (2 in.) of the closed position. If the door or gate swings outward to open, the car door or gate must be closed and locked before the car can move.

d) Strength and Deflection of Doors, Gates, and Their Guides, Guide Shoes, Track, and Hangers.
1) Horizontal sliding car doors and gates shall be designed and installed to withstand a force of 335 N (75 lbf) applied horizontally on an area 100 mm by 100 mm (4 in. by 4 in.) at right angles to and at any location on the car door without permanent deformation. The deflection shall not exceed 19 mm (0.75 in.) and shall not displace the door from its guides or tracks. The force shall be applied while the door is in the fully closed position.

2) Folding car doors shall be designed and installed to withstand a force of 335 N (75 lbf) applied horizontally using a 100 mm (4 in.) diameter sphere at any location within the folds on the car door without permanent deformation. The deflection shall not exceed 19 mm (0.75 in.) and shall not displace the door from its guides or tracks. The force shall be applied while the door is in the fully closed position.

Rationale: To add strength and deflection requirements for car doors and gates on private residence elevators.

5.3.1.8.3 Clearance Between Hoistway Doors and Car Doors or Gates. The distance between the hoistway face of the landing door and the hoistway face of car door or gate shall conform to one of the following:

a) Power Operated Horizontally Sliding Hoistway and Car Doors. Where power operated horizontally sliding hoistway and car doors are used, the measurement between the leading edge of the doors or sight guard, if provided, shall not exceed 100 mm (4 inches). If it is possible for a user to detach or disconnect either door from the operator (such as in the event of operator failure) and such detachment or disconnection allows the user to operate the door manually, requirement 5.3.1.8.3(e) shall apply.

b) Swinging Hoistway Doors and Folding Car Doors. Where swinging hoistway doors and folding car doors are used and both doors are in the fully closed position, the space between the Hoistway door and the folding door shall reject a 100 mm (4 inch) diameter ball at all points.

c) Swinging Hoistway Doors and Car Gates. Where swinging hoistway doors and car gates are used, the space between the Hoistway door and the car gate shall reject a 100 mm (4 inch) diameter ball at all points.

d) Swinging Hoistway Doors and Power Operated Horizontally Sliding Car Doors. Where car door(s) are powered, and arranged so that the car door(s) cannot be closed until after the hoistway door is closed, and car door(s) automatically open when the car is at a landing and the hoistway door is opened, the measurement between the hoistway face of the hoistway door and the hoistway face of the car door at its leading edge shall not exceed 100 mm (4 inches). If it is possible for a user to detach or disconnect either door from the operator (such as in the event of operator failure) and such detachment or disconnection allows the user to operate the door manually, requirement 5.3.1.8.3(e) shall apply.

e) Swinging or Horizontally Sliding Hoistway Doors and Manually Operated Horizontally Sliding Car Doors. Where swinging or horizontally sliding hoistway doors and manual horizontally sliding car doors are used and both doors are in the fully closed position, the space between the swinging or horizontally sliding hoistway door and the manual horizontally sliding car doors shall reject a 100 mm (4 inch) diameter ball at all points.

Rationale: Moved requirements for clearance between hoistway door and car door or gate. Reduced clearances based on Hazard Analysis and provided additional detail to define the clearance requirement for various door or gate combinations.
Date: April 26, 2017

Jamie Schaefer-Wilson
The Safety Institute
340 Anawan Street
Rehoboth, MA 02769

Carol Pollack-Nelson, Ph.D.
Independent Safety Consulting
13713 Valley Drive
Rockville, Maryland 20850

Andrew Cash & David Krugler
Cash Krugler & Fredericks, LLC
5447 Roswell Road
Atlanta, GA 30342

Dear Sirs and Mesdames:

On November 13, 2014, you filed a petition requesting that the U.S. Consumer Product Safety Commission (CPSC) initiate rulemaking to issue a safety standard for residential elevators to address an entrapment hazard caused by an excess gap between the elevator car door and hoistway door.

On January 7, 2015, the Office of the General Counsel docketed the request for rulemaking as Petition CP 15-1 under the CPSA. The Commission published a request for public comment in the Federal Register on January 22, 2015 (80 Fed. Reg. 3226). The comment period ended on March 23, 2015. The Commission received one timely comment and two submissions after the comment period ended, which were addressed in

1 You also requested a recall to retrofit existing residential elevators. However, the Commission's regulations provide that petitions are for the issuance, amendment, or revocation of rules, 16 C.F.R. § 1051.1(a). Rulemaking is prospective. Substantial product hazards requiring remedial action regarding particular elevators currently in place may be appropriate under section 15 of the CPSA and are reviewed by the Office of Compliance. Accordingly, only the request for rulemaking on residential elevators was docketed as a petition. 80 Fed. Reg. 3226 (January 22, 2015).
the staff briefing package on the petition. For the reasons set forth below, the Commission has denied your petition.

Incident Data and Hazard Scenario

CPSC staff reviewed the incident information you submitted on 16 incidents that occurred between 1958 and 2013. Staff’s review found that nine of these incidents occurred in a nonresidential location, and four incidents did not match the hazard scenario described in the petition. Of the three remaining incidents that could have involved the entrapment-hazard scenario, there were insufficient details in two of the incidents to establish whether they occurred in a residential elevator.

CPSC staff also reviewed the incident data from the Consumer Product Safety Risk Management System (CPSRMS). Staff identified eight incident reports, occurring between January 1, 1981 and November 10, 2016, and describing victims ranging in age from 3 to 16 years, that might involve entrapments between the elevator car and hoistway doors. Of the eight incidents, there was insufficient detail to determine whether an entrapment between fully closed car and hoistway doors was the cause of the five involving fatal injuries. In the three reported nonfatal incidents, staff believes that entrapments occurred in the space between fully closed hoistway and accordion-style car doors. Staff’s review of the National Electronic Injury Surveillance System (NEISS) records retrieved for residential elevator entrapment incidents from January 1, 1981 to December 31, 2015 showed that there were 131 cases involving residential elevator door entrapments. However, there was not enough information to determine how the incidents occurred or whether they were caused by the hazard scenario identified in the petition.

Staff assessed the hazard scenario presented in the petition. When you submitted your request in November 2014, the applicable voluntary standard for residential elevators was the American Society of Mechanical Engineers (ASME) A17.1-2013, Safety Code for Elevators and Escalators. The 2013 version of ASME A17.1 allowed a 5-inch clearance between the residential elevator car door and the hoistway door. Staff’s review of the 2013 version indicated that a 5-inch clearance between car door and hoistway door could contribute to an entrapment hazard to children. According to staff, head size is the primary factor determining whether a young child can fit entirely within the space between the closed car and hoistway doors. If the child’s head is larger than the available space, the exterior door will be unable to close completely, thereby preventing the entrapment-hazard scenario.

2 See https://www.cpsc.gov/s3fs-public/Petition%20CP%2015-1%20Requesting%20Rulemaking%20on%20Residential%20Elevators%20-%20March%202017.pdf
3 The Commission voted 4-1 to deny the petition. Acting Chairman Buerkle, Commissioner Kaye, Commissioner Robinson, and Commissioner Mohorovic voted to deny the petition. Commissioner Adler voted to defer the petition.
4 The staff reviewed incidents after 1981 because the ASME A17.1 space requirement between the residential elevator car door and hoistway door was changed from 4 inches to 5 inches in 1981. Staff also attempted to retrieve incidents before 1981, but no residential elevator incidents could be identified in the CPSC database.
Current ASME Standard

In January 2015, ASME revised ASME A17.1-2013. ASME A17.1-2016 was published on November 30, 2016. The standard becomes effective on May 30, 2017. ASME A17.1-2016 added section 5.3.1.8.3, which specifies the clearance between residential elevator hoistway doors and car doors to prevent an entrapment hazard. The new section specifies that clearance cannot exceed 4 inches for five different car and hoistway door combinations. ASME A17.1-2016 also added section 5.3.1.8.2 (d), which specifies the strength and deflection of doors, gates, and their guides, guide shoes, tracks, and hangers. This section addresses the hazard of an entrapment space created between the hoistway door and elevator car door due to one or both doors deflecting and creating a hazardous gap.

Staff’s review of the 2016 version of the ASME standard indicates that the revised 4-inch requirement addresses the potential entrapment hazard from the 5-inch clearance between the hoistway and car door. Allowing a space between the car and hoistway doors of no more than 4 inches would prevent all but the smallest of the youngest infants (e.g., small newborns) from fitting completely within the closed space, and this group of infants is highly unlikely to be involved in the hazard scenario. In addition, the requirement specifying the strength and deflection of the car and hoistway doors prevents doors from deforming and creating a hazardous gap.

Staff’s review also considered whether substantial compliance with ASME A17.1-2016 is likely. To determine whether there would be substantial compliance with the new standard, staff reviewed the elevator building codes of all 50 states. Almost all of the states reference ASME A17.1 in the state elevator building code requirements. However, many states do not reference the latest version of the standard in their building codes. Staff expects that most elevators installed after ASME A17.1-2016 becomes effective in May 2017 will meet the new requirements. Staff also expects that information regarding the revisions in the 2016 version of the ASME standard will be disseminated to the industry by associations including the National Association of Elevator Contractors (NAEC), Accessibility Equipment Manufacturer’s Association (AEMA), and National Association of Elevator Safety Authorities (NAESA), all of which provide education, training, and certification programs for residential elevator installation and inspection. CPSC staff expects to work with ASME to alert the state regulatory bodies of the latest version of the voluntary standard, which will help increase compliance with the voluntary standard.

Based on staff’s review, the Commission believes that the new ASME standard will be effective in addressing the potential for entrapment hazards in residential elevators that may occur as a result of an excess gap between the car door and hoistway door. Because state building codes reference the ASME A17.1 standard, the Commission also finds that there is good reason to believe that industry will comply with these requirements once the 2016 version is referenced in state building codes. The
Commission believes that staff’s ongoing activities with the ASME A17.1 Committee may help increase compliance with the voluntary standard.

Conclusion

Based on staff’s review of the relevant incident data and the current ASME standard, the Commission is denying your petition. On behalf of the Commission, I would like to thank you for bringing this important safety issue to the agency’s attention. We greatly appreciate your interest and support.

Sincerely,

Todd A. Stevenson
Acting Chairman Ann Marie Buerkle’s Letter to All 50 Governors to Change Building Codes for Residential Elevators

August 6, 2019

United States
Consumer Product Safety Commission
4330 East West Highway
Bethesda, Md 20814
Acting Chairman Ann Marie Buerkle

The Office of the Governor

Dear Governor:

I am writing to seek your assistance in protecting consumers in your State from a serious hazard associated with residential elevators. Specifically, some elevators installed in your jurisdiction may have excessive space between the elevator car door/gate (car door) and the hoistway or swing door (hoistway door). In some installations, the space between the elevator car door and hoistway door is large enough to allow children to fit between the closed doors. If a child becomes trapped in the space when the elevator is called to another floor, the child may be dragged inside the hoistway and crushed against the next floor’s sill. The U.S. Consumer Product Safety Commission (CPSC) staff is aware of a total of nine (9) incidents associated with this product, including five fatalities involving entrapments between car and hoistway doors of residential elevators and a sixth where a toddler was trapped beneath the elevator.

The current version of the relevant safety standard, ASME A17.1-2016 Safety Code for Elevators and Escalators, limits the space between the car door and hoistway door to less than four inches. When reviewing a petition for a federal standard in 2017, the Commission concluded that the 4-inch standard would adequately address the risk of injury and would be widely
complied with. However, more recent information indicates that some States have not updated building codes to incorporate the 2016 standard, and other States are not inspecting residential elevator installations to ensure that the relevant standard is being adhered to.

Last week I issued a safety alert to consumers about the hidden hazard of residential elevators. For our part, CPSC will continue its investigations into this matter. Given the critical role of installers on the safety of this product, we are asking for your help in reviewing your requirements and procedures, to ensure that residential elevators are installed correctly and do not have a hazardous gap.

Should you have any questions on this matter, please feel free to contact my Acting Director for the Office of Hazard Identification and Reduction, Duane Boniface, at (301) 504-7671 or at dboniface@cpsc.gov. I thank you in advance for your assistance with this matter.

Sincerely,

Ann Marie Buerkle
Acting Chairman
Safety Alert to Protect Children from a Deadly Gap between Doors of Home Elevators

August 1, 2019

Today, the Accessibility Equipment Manufacturers Association (AEMA) and the National Association of Elevator Contractors (NAEC) join me in warning consumers with home elevators and visitors to homes with elevators to protect small children from a deadly gap that may exist between the doors. The distance between the inner elevator car door and the room access door (hoistway door) on home elevators may be too wide, allowing a small child to enter the space and close the room access door without opening the elevator car door. If this happens, the child can be seriously injured or killed when the elevator moves.

Residential elevators are commonly found in multi-level homes, townhomes, vacation homes and rentals, and in large homes that have been converted to inns or bed-and-breakfast hotels.

CPSC is aware of several tragic incidents in which children became entrapped between the doors leading to death, serious fractures, traumatic asphyxia, and lifelong injuries.

We are urging consumers to have a qualified elevator inspector examine their home elevator for this dangerous gap and other potential safety hazards, inspecting to the latest safety standard, ASME A17.1 Safety Code for Elevators and Escalators.

Dangerous gaps can be eliminated by placing space guards on the back of the room access door or installing an electronic monitoring device that deactivates the elevator when a child is detected in the gap. We also urge consumers to contact their elevator manufacturer or an elevator installer to obtain these critical safety devices and protect children from this hidden hazard.

We advise consumers to report any safety incident involving residential elevators at: www.SaferProducts.gov.
If the gap is too large, a small child can become entrapped between the room access door and the elevator car door.

Contact: Joe Martyak
office: 301.504.7599 mobile: 703.403.1111
Washington, D.C. – The U.S. Consumer Product Safety Commission (CPSC) is warning consumers with home elevators and visitors to homes with elevators to protect small children from being crushed to death in a deadly gap that may exist between the doors. The distance between the inner elevator car door or gate and the exterior (i.e., hoistway) elevator access door may be too deep to protect...
small children. If the gap is too deep between any exterior (i.e., hoistway) door and the farthest point of the inner door (which is often an accordion door) a child can enter and close the exterior (i.e., hoistway) door without opening the interior car door, and become entrapped between the two doors, resulting in serious injuries or death when the elevator car moves. Children, some as young as two and as old as 12, have been crushed to death in this gap, suffering multiple skull fractures, fractured vertebrae and traumatic asphyxia. Other children have suffered horrific and lifelong injuries.

Residential elevators are commonly found in multi-level homes, townhomes, vacation homes and rentals, and in large homes that have been converted to inns or bed-and-breakfast hotels.

If you have an elevator in your home or in your vacation rental, make sure that the gap between doors is no more than four inches deep. If you are uncertain of the measurement or are otherwise concerned about the safety of the elevator, lock the elevator itself in an unusable position, or lock all access doors to the elevator. CPSC urges consumers to have a qualified elevator inspector examine their home elevator for this dangerous gap and other potential safety hazards, inspecting to the latest ASME A17.1, Safety Code for Elevators and Escalators. Dangerous gaps can be made safer by placing space guards on the back of the exterior (i.e., hoistway) door or installing an electronic monitoring device that deactivates the elevator when a child is detected in the gap. CPSC also urges consumers to contact their elevator manufacturer or an elevator installer to obtain these critical safety devices to address this hidden hazard. Elevator installers should never allow any gap greater than four inches deep to exist in an elevator entryway.

CPSC will continue its investigation into the safety of residential elevators, and advises consumers to report any safety incident involving residential elevators at: www.SaferProducts.gov.

About the U.S. CPSC
The U.S. Consumer Product Safety Commission (CPSC) is charged with protecting the public from unreasonable risks of injury or death associated with the use of thousands of types of consumer products. Deaths, injuries, and property damage from consumer product incidents cost the nation more than $1 trillion annually. CPSC’s work to ensure the safety of consumer products has contributed to a decline in the rate of deaths and injuries associated with consumer products over the past 40 years.

Federal law bars any person from selling products subject to a publicly announced voluntary recall by a manufacturer or a mandatory recall ordered by the Commission.

For lifesaving information:

- Visit CPSC.gov.
- Sign up to receive our e-mail alerts.
- Follow us on Facebook, Instagram @USCPSC and Twitter @USCPSC.
- Call CPSC’s Hotline at 800-638-2772 (TTY 301-595-7054).
- Contact a media specialist.
Media Contact

Please use the below phone number for all media requests.

Phone: (301) 504-7908
Spanish: (301) 504-7800

View CPSC contacts for specific areas of expertise
United States
CONSUMER PRODUCT SAFETY COMMISSION

Vacation Rental Homes Can Pose a Deadly Hazard - Kids Can Be Crushed to Death in Dangerous Home Elevator Gaps

Release date: June 24, 2021
Release number: 21-153

WASHINGTON, D.C. Vacation rental homes have become a popular alternative to hotels and motels during the COVID-19 pandemic. As COVID-19 restrictions are lifted, the Consumer Product Safety Commission (CPSC) is reminding travelers to take safety with them, especially when staying in vacation rental homes with residential elevators.

Residential elevators can pose a deadly hazard. Consumers who have a residential elevator at home, or use one at vacation rentals, should be aware that a simple push of a button can swiftly turn into a tragedy. In fact, residential elevators were linked to 4,600 injuries and 22 deaths from 1981 through 2019.

CPSC is warning consumers with home elevators, and those who visit homes with elevators, to be aware of a deadly gap that may exist between the elevator door and the exterior (i.e., hoistway) door inside the home. Children, some as young as two, up to age 16, have been crushed to death in this gap. In some incidents, children have suffered multiple skull fractures, fractured vertebrae, traumatic asphyxia and other horrific and lifelong injuries.
Typical Residential Elevator with Swinging Hoistway Door and Accordion Car Door

A Deadly Gap:
The distance between the inner elevator car door or gate and the exterior hoistway door inside the home may be too deep to protect small children. If the gap is too deep between any exterior hoistway door and the farthest point of the car door (which is often an accordion door), a child can enter and close the exterior hoistway door without opening the interior car door, and become entrapped between the two doors, resulting in serious injuries, or death, when the elevator car moves.

Residential elevators are commonly found in multilevel homes, townhomes, vacation homes and rentals, in addition to large homes that have been converted to inns or bed-and-breakfast hotels. Elevator installers should never allow any gap greater than four inches deep to exist in an elevator entryway, as measured in accordance with ASME A17.1-2016 *Safety Code for Elevators and Escalators*.

How to Protect Kids and Fix the Gap:

- Consumers concerned about elevator safety, should lock the elevator itself in an unusable position, or lock all exterior (hoistway) doors to the elevator.
- CPSC urges consumers to have a qualified elevator inspector examine their home elevator for this dangerous gap and other potential safety hazards, ensuring that the elevator complies with the requirements of the ASME A17.3-2017 *Safety Code for Existing Elevators and Escalators*.
- Dangerous gaps can be eliminated by placing space guards on the back of the exterior hoistway door, or by installing an electronic monitoring device that deactivates the elevator when a child is detected.
in the gap. Consumers can contact their elevator manufacturer, or an elevator installer, to obtain these critical safety devices and protect children from this hidden hazard.

Residential Elevator Recalls:

- Check www.cpsc.gov for recalls of residential elevators. If the elevator has been recalled, contact the recalling company, and get the remedy right away.
- CPSC has worked with manufacturers to recall residential elevators for a variety of hazards:

CPSC will continue its investigation into the safety of residential elevators, and advises consumers to report any safety incident involving residential elevators at www.SaferProducts.gov.

For more information, contact Nicolette Nye in CPSC’s Office of Communications at nnye@cpsc.gov or at 240-204-4410.

About the U.S. CPSC

The U.S. Consumer Product Safety Commission (CPSC) is charged with protecting the public from unreasonable risks of injury or death associated with the use of thousands of types of consumer products. Deaths, injuries, and property damage from consumer product incidents cost the nation more than $1 trillion annually. CPSC’s work to ensure the safety of consumer products has contributed to a decline in the rate of deaths and injuries associated with consumer products over the past 40 years.

Federal law bars any person from selling products subject to a publicly announced voluntary recall by a manufacturer or a mandatory recall ordered by the Commission.
For lifesaving information:

- Visit CPSC.gov.
- Sign up to receive our e-mail alerts.
- Follow us on Facebook, Instagram @USCPSC and Twitter @USCPSC.
- Call CPSC’s Hotline at 800-638-2772 (TTY 301-595-7054).
- Contact a media specialist.

Media Contact

Please use the below phone number for all media requests.

Phone: (301) 504-7908
Spanish: (301) 504-7800

View CPSC contacts for specific areas of expertise
CPSC Urges Vacation Rental Platforms, AirBnB, Vrbo, TripAdvisor and Others to Require Owners to Disable Home Elevators Immediately

Release date: July 20, 2021

WASHINGTON, D.C. – Following another report of a tragic death of a young child in a residential elevator, U.S. Consumer Product Safety Commission (CPSC) Acting Chairman Robert Adler today asked the vacation rental community for help. In a letter to vacation rental platforms, AirBnB, Vrbo, and others, Adler urged the companies to take steps immediately to protect vulnerable consumers.

“The agency is taking steps with the manufacturers, but we need the businesses that facilitate vacation rentals to join us,” said Adler. “These injuries and deaths are horrific, and we need property owners and rental agencies to disable elevators immediately until they have been inspected.”

Residential elevators pose a hidden and deadly hazard: small children can be crushed to death in a gap that may exist between the doors. If the gap between any exterior (i.e., hoistway) door, and the farthest point of the inner door (which is often an accordion door) is too deep, a child can enter and close the hoistway door without opening the interior car door, and become entrapped between the two doors, resulting in serious injuries or death when the elevator car moves. Children, some as young as two, and as old as 12, have been crushed to death in this gap, suffering multiple skull fractures, fractured vertebrae and traumatic asphyxia. Other children have suffered devastating and lifelong injuries. Last week, a 7-year-old child was reported to have tragically died in a vacation home elevator in North Carolina.

Today’s letter is the first time the agency has publicly called on vacation rental businesses to take immediate action. Specifically, the letter asks rental companies to notify all renters immediately about the potential hazard via email, or in a warning box on their reservation or booking pages; immediately require all members or “hosts” using the platforms to lock outer access doors or otherwise disable the elevators in their properties, unless and until those members provide proof of an inspection, certifying that no hazardous gap exists; and require elevator inspections of anyone posting a listing going forward.

CPSC has issued warnings, recalls and a lawsuit concerning residential elevators.

- CPSC Sues thyssenkrupp Access Corp., July 7, 2021 CPSC Sues thyssenkrupp Access Corp. Over Deadly Gap Hazard in Residential Elevators; Action Prompted by Three Incidents: One Child Died, Another Permanently Disabled, and a Third Hospitalized After Becoming Entrapped | CPSC.gov

For more safety information, see CPSC’s safety education messages on residential elevators.

- Vacation Rental Homes Can Pose a Deadly Hazard - Kids Can Be Crushed to Death in Dangerous Home Elevator Gaps | CPSC.gov
- As Family Vacations Resume, CPSC Warns of Safety Hazards in Vacation Rental Homes | CPSC.gov

CPSC will continue its investigation into the safety of residential elevators, and advises consumers to report any safety incident involving residential elevators at www.SaferProducts.gov.

About the U.S. CPSC

The U.S. Consumer Product Safety Commission (CPSC) is charged with protecting the public from unreasonable risks of injury or death associated with the use of thousands of types of consumer products. Deaths, injuries, and property damage from consumer product incidents cost the nation more than $1 trillion annually. CPSC’s work to ensure the safety of consumer products has contributed to a decline in the rate of deaths and injuries associated with consumer products over the past 40 years.

Federal law bars any person from selling products subject to a publicly announced voluntary recall by a manufacturer or a mandatory recall ordered by the Commission.

For lifesaving information:

- Visit CPSC.gov.
CPSC Urges Vacation Rental Platforms, AirBnB, Vrbo, TripAdvisor and Others to Require Owners to Disable Home Elevators Immediately

- Sign up to receive our e-mail alerts.
- Follow us on Facebook, Instagram @USCPSC and Twitter @USCPSC.
- Call CPSC’s Hotline at 800-638-2772 (TTY 301-595-7054).
- Contact a media specialist.

Media Contact
Please use the below phone number for all media requests.

Phone: (301) 504-7908
Spanish: (301) 504-7800

View CPSC contacts for specific areas of expertise
As Family Vacations Resume, CPSC Warns of Safety Hazards in Vacation Rental Homes

Release date: July 13, 2021

Release Details
WASHINGTON, D.C. — As COVID-19 restrictions are lifted, millions of Americans are traveling this summer. The Consumer Product Safety Commission (CPSC) is reminding consumers to look for critical safety features when staying in vacation rental homes.

Travelers should make sure their vacation rental home has smoke alarms, carbon monoxide alarms, fire extinguishers, in addition to pool safety and home elevator safety features, if applicable.

Among the most important safety tips for traveling consumers are the following:

Fire Safety
- Check for adequate smoke alarms and carbon monoxide detectors.
 - Smoke alarms should be on every level of the home, outside each sleeping area and inside every bedroom.
 - Carbon monoxide alarms should be on every level of the home outside sleeping areas.
- Make sure there is a fire extinguisher in the home.
- Have a fire escape plan (providing two ways out each room).

Child Safety
- Avoid deadly furniture and TV tip-overs; don’t let children climb on furniture, and don’t place toys and remotes where children might be tempted to climb up to reach for them.
- Keep cleaning supplies in a locked cabinet or out of reach of children.
- Keep all window cords out of reach of children.
- Keep baby’s sleep space free from pillows and blankets, and use cribs that meet CPSC safety standards.
- Even when traveling, ensure that baby sleeps in a flat crib or play yard with a well-fitting sheet.
Check SaferProducts.gov to be sure none of the child or infant products in a vacation rental are subject to a recall. If they are, do not use them, and notify the property or rental manager.

Pool Safety

At vacation rental homes with pools:

- Never leave a child unattended in or near water, and always designate an adult Water Watcher. This person should not be reading, texting, using a smartphone or otherwise be distracted.
 - Child drowning is the leading cause of unintentional death among children ages one to four years old.
- There should be an alarm on the door leading from the house to the pool.
- Pools and spas should be surrounded by a fence at least four feet high with self-closing and self-latching gates.
- Pools and spas should have drain covers that meet federal standards; consumers can ask property or rental managers for confirmation.
- Life-saving equipment, such as life rings or reaching poles, should be available for use.
- Make sure kids learn to swim.
- Keep children away from pool drains.
- Know how to perform CPR on children and adults.

Home Elevator Safety

At vacation rental homes with elevators:

- Be aware of a deadly gap (greater than 4 inches deep) that may exist between the interior and exterior doors of home elevators.
 - Children, from ages 2 through 16, have been crushed to death in this gap. In some incidents, children have suffered multiple skull fractures, fractured vertebrae, traumatic asphyxia and other horrific and lifelong injuries.
- Lock the elevator so that it cannot be accessed by children; or lock all exterior (hoistway) doors to the elevator.
- Don’t let children play with or around residential elevators.
 - Residential elevators were linked to 4,600 injuries and 22 deaths from 1981 through 2019.

Related poster:

NSN Poster – Take Safety With You

For more information, contact Nicolette Nye at nnye@cpsc.gov or at 240-204-4410.

About the U.S. CPSC
The U.S. Consumer Product Safety Commission (CPSC) is charged with protecting the public from unreasonable risks of injury or death associated with the use of thousands of types of consumer products. Deaths, injuries, and property damage from consumer product incidents cost the nation more than $1 trillion annually. CPSC’s work to ensure the safety of consumer products has contributed to a decline in the rate of deaths and injuries associated with consumer products over the past 40 years.

Federal law bars any person from selling products subject to a publicly announced voluntary recall by a manufacturer or a mandatory recall ordered by the Commission.

For lifesaving information:

- Visit CPSC.gov.
- Sign up to receive our e-mail alerts.
- Follow us on Facebook, Instagram @USCPSC and Twitter @USCPSC.
- Call CPSC’s Hotline at 800-638-2772 (TTY 301-595-7054).
- Contact a media specialist.
CPSC Sues thyssenkrupp Access Corp. Over Deadly Gap Hazard in Residential Elevators; Action Prompted by Three Incidents: One Child Died, Another Permanently Disabled, and a Third Hospitalized After Becoming Entrapped

Typical Entrapment Hazard Scenario Depicting Child Trapped Between the Exterior Hoistway Door and Interior Elevator Car Door or Gate
WASHINGTON, D.C. – To prevent children from suffering further serious injury or death, the U.S. Consumer Product Safety Commission (CPSC) filed an administrative complaint against thyssenkrupp Access Corp. (thyssenkrupp), alleging that thyssenkrupp’s residential elevators contain defects that present a substantial product hazard. CPSC alleges that certain models of thyssenkrupp residential elevators manufactured and distributed through 2012 were installed with a hazardous gap between the exterior hoistway door and the interior elevator car door or gate. The models include, but are not limited to: Chaparral, Destiny, LEV, LEV II, LEV II Builder, Rise, Volant, Windsor, Independence, and Flexi-Lift models. thyssenkrupp has refused to conduct a voluntary recall of the hazardous residential elevators.

Children can become entrapped when a residential elevator is installed with excessive space between the exterior hoistway door and the interior elevator car door or gate, and suffer serious injuries or death when the elevator is called to another floor. There have been three incidents involving thyssenkrupp residential elevators, including a 2-year-old child who died in 2017, and a 3-year-old child left permanently disabled in 2010. Additionally, in 2019, a 4-year-old boy was hospitalized after a crush injury.

“These injuries and deaths are ghastly,” said Acting Chairman Robert Adler. “The gaps in residential elevators are truly a hidden hazard for homeowners, and for anyone who is visiting or renting a home with an elevator.”

The complaint charges that the residential elevators are defective for a variety of reasons, including defects in thyssenkrupp’s installation materials and defects in the elevators’ design.

At least 16,800 residential elevators were manufactured and distributed by ThyssenKrupp Access Manufacturing, LLC, thyssenkrupp Access Corp., Access Industries, Inc., or National Wheel-O-Vator Company, Inc., through 2012. The residential elevators were distributed by third-party builders, residential elevator dealers and installers for $15,000 to $25,000 for a two-landing installation.

The Commission voted 3-1 to approve the complaint, which seeks, among other things, that thyssenkrupp be ordered to notify the public of the defect and offer consumers a remedy that includes a free inspection, and if necessary, installation of safety devices, such as space guards, at no cost to consumers.

CPSC urges consumers to disable or block children’s access to the thyssenkrupp residential elevators to prevent a potential deadly incident.

About the U.S. CPSC
The U.S. Consumer Product Safety Commission (CPSC) is charged with protecting the public from unreasonable risks of injury or death associated with the use of thousands of types of consumer products. Deaths, injuries, and property damage from consumer product incidents cost the nation more than $1 trillion annually.
annually. CPSC’s work to ensure the safety of consumer products has contributed to a decline in the rate of deaths and injuries associated with consumer products over the past 40 years.

Federal law bars any person from selling products subject to a publicly announced voluntary recall by a manufacturer or a mandatory recall ordered by the Commission.

For lifesaving information:

- Visit CPSC.gov.
- Sign up to receive our e-mail alerts.
- Follow us on Facebook, Instagram @USCPSC and Twitter @USCPSC.
- Call CPSC’s Hotline at 800-638-2772 (TTY 301-595-7054).
- Contact a media specialist.

Media Contact

Please use the below phone number for all media requests.

Phone: (301) 504-7908
Spanish: (301) 504-7800

View CPSC contacts for specific areas of expertise
July 20, 2021

Vacation Rental Platforms, Agencies, and Websites

Dear Sir or Madam:

I am writing to urge you to act immediately to protect consumers—especially young children—from the dangers posed by residential elevators in the homes for rent through your platform or agency. Residential elevators can pose a deadly but unforeseen hazard to children, particularly children who are encountering them in vacation or rental homes.

The U.S. Consumer Product Safety Commission (CPSC) is an independent regulatory agency responsible for protecting consumers from unreasonable risks of injury and death from consumer products. CPSC has jurisdiction over residential elevators, and the agency has engaged with the manufacturers and sellers of these units regarding their legal responsibilities. I reach out to you, not as a regulator, but in the hopes that you will join us in ensuring that children are safe in rentals on your platform.

Residential elevators pose a hidden and deadly hazard: small children can be crushed to death in a deadly gap that may exist between the doors. If the gap is too deep between any exterior (i.e., hoistway) door and the farthest point of the inner door (which is often an accordion door), a child can enter and close the hoistway door without opening the interior car door, and become entrapped between the two doors, resulting in serious injuries or death when the elevator car moves. Children, some as young as two and as old as 12, have been crushed to death in this gap, suffering multiple skull fractures, fractured vertebrae and traumatic asphyxia. Other children have suffered horrific and lifelong injuries. Last week, a 7-year-old child was reported to have been tragically killed in a vacation home elevator.

This hazard can be addressed by having a qualified elevator inspector examine the home elevator for this dangerous gap and other potential safety hazards, inspecting to the latest ASME A17.1, Safety Code for Elevators and Escalators. Dangerous gaps can be made safer by placing space guards on the back of the hoistway door or installing an electronic monitoring device that deactivates the elevator when a child is detected in the gap. These fixes are relatively inexpensive and can save lives.
You are in the unique position to have direct contact information for both owners and renters of vacation homes. I urge you to take the following steps to protect consumers who are—even now—beginning to enjoy their summer vacation homes without knowledge of this extreme hazard:

- Immediately notify all renters who use your platform of this potential hazard via email or in a warning box on their reservation or booking pages.
- Immediately require all members or “hosts” using your platform to lock outer access doors or otherwise disable the elevators in their properties unless and until those members provide proof of an inspection to certify that no hazardous gap exists; and
- Make such an inspection a requirement of anyone posting a listing on your platform going forward.

CPSC will continue to work with elevator manufacturers to ensure that their products are safe for consumers, but the agency needs your help to reach the owners and renters of properties with the potential hazard. By working together, we can stop these agonizing deaths and prevent further harm to children and families. If you have any questions, or if we can be of any assistance, please do not hesitate to contact me.

Sincerely,

Robert S. Adler
Acting Chair